a2 United States Patent

Tubaltsev et al.

US009225597B2

US 9,225,597 B2
Dec. 29, 2015

(10) Patent No.:
(45) Date of Patent:

(54) MANAGED GATEWAYS PEERING WITH

EXTERNAL ROUTER TO ATTRACT INGRESS
PACKETS

(71)
(72)

Applicant: Nicira, Inc., Palo Alto, CA (US)

Inventors: Ariel Tubaltsev, Santa Clara, CA (US);
Ronghua Zhang, San Jose, CA (US);
Benjamin C. Basler, Mountain View,
CA (US); Serge Maskalik, Los Gatos,
CA (US); Rajiv Ramanathan,
Cupertino, CA (US); David J. Leroy,
Saratoga, CA (US); Srinivas Neginhal,
Santa Clara, CA (US); Kai-Wei Fan,
San Jose, CA (US); Ansis Atteka,
Mountain View, CA (US)

(73)

")

Assignee: NICIRA, INC., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 80 days.

@
(22)

Appl. No.: 14/214,553

Filed: Mar. 14,2014

(65) Prior Publication Data

US 2015/0263899 Al Sep. 17, 2015
Int. Cl1.

HO4L 12/28
GO6F 15/173

(51)
(2006.01)
(2006.01)

(Continued)

(52) US.CL

CPC HO4L 41/0826 (2013.01); HO4L 41/12

(2013.01); HO4L 45/24 (2013.01)
Field of Classification Search

CPC . HO4L 12/5695; HO04L 41/18; HO4L 41/0826;

HO4L 41/12; HO04L 41/5003; HO4L 45/00;

HO4L 45/24; HO4L 45/64;, H04L 45/586;

HO4L 47/10; HO4L 47/70, HO4L 61/2015;

HO4L 63/0272; HO4L 67/16; GOG6F 9/455;

(58)

(=

External N

25

250

fetwark

GOG6F 9/45533; GOGF 2009/4557, H04Q
2213/1338; HO04Q 2213/13342; H04Q
2213/13349; H04Q 2213/13389
370/229, 254, 328, 338, 351, 392,
370/396-399, 400-409; 709/201, 217-219,
709/223-226, 238-244

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,504,921 A
5,550,816 A

4/1996 Dev et al.
8/1996 Hardwick et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP
GB

1653688
2419703

5/2006
5/2006

(Continued)
OTHER PUBLICATIONS

U.S.Appl. No. 14/214,5611, filed Mar. 14, 2014, Tubaltsev, Ariel, et al.
(Continued)

Primary Examiner — Tri H Phan
(74) Attorney, Agent, or Firm — Adeli LLP

(57) ABSTRACT

Some embodiments provide a network system. The network
system includes a first set of host machines hosting virtual
machines that connect to each other through a logical net-
work. The network system includes a second set of host
machines hosting virtualized containers that operate as gate-
ways to process packets entering the logical network from
external sources. Each of the virtualized containers advertises
itself to an external router as a next hop for packets entering
the logical network such that the external router uses equal-
cost multi-path forwarding to distribute the packets across the
virtualized containers on the second set of host machines.

20 Claims, 25 Drawing Sheets

260

r

280
Gateway Host
L3 Gateway
235

240

Gateway Host

L3 Gatews;

[BGP Daemon} |

285 290

220

Managed Network

US 9,225,597 B2

Page 2
(51) Int. CI1. 8,370,834 B2 2/2013 Edwards et al.
8,456,984 B2 6/2013 Ranganathan et al.
HO4L 12/24 (2006'01) 8,504,718 B2 8/2013 Wangg etal.
HO4L 12/707 (2013.01) 8,565,108 B1 10/2013 Marshall et al.
8,611,351 B2 12/2013 Gooch et al.
(56) References Cited 8,612,627 Bl 12/2013 Brandwine
8,625,594 B2 1/2014 Safrai et al.
U.S. PATENT DOCUMENTS 8,625,603 Bl 1/2014 Ramakrishnan et al.
8,625,616 B2 1/2014 Vobbilisetty et al.
8,627,313 B2 1/2014 Edwards et al.
g’ggé’ggz ﬁ 12;}335 gfczz:tﬁ' ot al. 8,644,188 Bl 2/2014 Brandwine et al.
6:104:699 A /2000 Holen(ier of al. 8,660,129 Bl 2/2014 Brendel et al.
6.219.699 Bl 4/2001 McCloghrie et al. 8,705,513 B2 4/2014 Van Der Merwe et al.
6.359.909 Bl 3/2002 Tto et al. 8,958,298 B2 2/2015 Zhangetal. 370/235
6’456’624 Bl 0/2002 Eccles et al. 8,997,094 B2 3/2015 Boschetal.c.oeve. 718/1
6’512,745 Bl 1/2003 Abe of al. 9,059,999 B2 6/2015 Koponen et al.
6’539’432 Bl 3/2003 Taguchi et al. 2001/0043614 A1 11/2001 Viswanadham et al.
6:680:934 Bl 1/2004 Cain 2002/0093952 Al 7/2002 Gond_a
6.785.843 Bl 8/2004 McRae et al. 2002/0194369 Al 12/2002 Rawllr_ls etal.
6.941,487 Bl 9/2005 Balakrishnan et al. 2003/0041170 AL 2/2003 Suzuki
6.950.428 Bl 9/2005 Horst et al. 2003/0058850 Al 3/2003 Rangarajan et al.
6’963’585 Bl 112005 Le Pennec et al. 2003/0069972 Al 4/2003 Yo_sh_lmura et al.
6’999’454 Bl 2/2006 Crump 2004/0073659 Al 4/2004 Rajsic et al.
7’046’630 B2 5/2006 Abe of al. 2004/0098505 Al 5/2004 Clemmensen
7:197:572 B2 3/2007 Matters et al. 2004/0267866 Al 12/2004 Carollo et al.
7,200,144 B2 4/2007 Terrell et al. 2005/0018669 Al 1/2005 Arndt etal.
7’209’439 B2 4/2007 Rawlins et al. 2005/0027881 Al 2/2005 Figueira et al.
7:260:648 B2 8/2007 Tingley et al. 2005/0053079 Al 3/2005 Havala
7283473 B2 10/2007 Arndt etal. 2005/0083953 Al 4/2005 May
7342916 B2 3/2008 Das et al. 2005/0120160 Al 6/2005 Plo_uffe et al.
7’391’771 B2 6/2008 Orava et al. 2005/0132044 Al 6/2005 GulI_lgo etal.
7,450’598 B2 11/2008 Chen ef al. 2006/0002370 Al 1/2006 Ra_ble_ etal.
7,463’579 B2 12/2008 Lapuh etal. 2006/0018253 Al 1/2006 Wlndl_sch et al.
7’478’173 Bl 1/2009 Delco 2006/0026225 Al 2/2006 Canali et al.
7:483:411 B2 1/2009 Weinstein et al. 2006/0029056 Al 2/2006 Perera et al.
7,555,002 B2 6/2009 Arndt et al. 2006/0056412 Al 3/2006 Page
7,606’260 B2 10/2009 Oguchi et al. 2006/0092940 Al 5/2006 Ansari et al.
7:643:488 B2 1/2010 Khanna et al. 2006/0092976 Al 5/2006 Laksl_lman etal.
7647426 B2* 1/2010 Pateletal. wvvvvevoorviii, 709/239 2006/0174087 Al 8/2006 Ha_ShlmOtO etal.
7’649’851 B2 1/2010 Takashige et al. 2006/0187908 Al 8/2006 Shlmozono et al.
7,710’874 B2 5/2010 Balakrishnan et al. 2006/0193266 Al 8/2006 Siddha et al.
7,764’599 B2 7/2010 Doi et al. 2006/0198321 Al 9/2006 Nadeau et al.
7,792’987 Bl 0/2010 Vohra et al. 2006/0291388 Al 12/2006 Amda_hl et al.
7,802’000 Bl 9/2010 Huang et al. 2007/0043860 Al 2/2007 Pabari
7:818:452 B2 10/2010 Matthews et al. 2007/0064673 Al 3/2007 Bh_andaru et al.
7826.482 Bl 11/2010 Minei et al. 2007/0140128 Al 6/2007 Klln_ker et al.
7,839’847 B2 11/2010 Nadeau et al. 2007/0156919 Al 7/2007 Potti et al.
7,885’276 Bl 2/2011 Lin 2007/0201357 Al 8/2007 Smethurst et al.
7:936:770 Bl 5/2011 Frattura et al. 2007/0297428 Al 12/2007 B_ose etal.
7037438 Bl 5/2011 Miller et al. 2008/0002579 Al 1/2008 Lindholm et al.
7,948’986 Bl 5/2011 Ghosh et al. 2008/0002683 Al 1/2008 Droux c_et al.
7:953:865 Bl 52011 Miller et al. 2008/0013474 Al 1/2008 Nagarajan et al.
7001.859 Bl 8/2011 Miller et al. 2008/0031263 Al 2/2008 Ervin c_et al.
7:995:483 Bl 82011 Bayar et al. 2008/0049621 Al 2/2008 McGuire et al.
8014278 Bl 9/2011 Subramanian et al. 2008/0049646 Al 2/2008 Lu
8.027.354 Bl 0/2011 Portolani et al. 2008/0059556 Al 3/2008 Greenspan et al.
8’031’633 B2 10/2011 Bueno et al. 2008/0071900 Al 3/2008 He_cker etal.
8,046’456 Bl 10/2011 Miller et al. 2008/0086726 Al 4/2008 Griffith et al.
8:054:832 Bl 11/2011 Shukla et al. 2008/0151893 Al 6/2008 Nordmark et al.
8,055,780 B2 11/2011 Richardson etal. 2008/0159301 AL 7/2008 de Heer
8.060.875 Bl 11/2011 Lambeth 2008/0189769 Al 8/2008 Casado et al.
8,131’852 Bl 3/2012 Miller et al. 2008/0225853 Al 9/2008 Melman etal.
8,149’737 B2 4/2012 Metke et al. 2008/0240122 Al 10/2008 Richardson et al.
8155028 B2 4/2012 Abu-Hamdeh et al. 2008/0253366 AL~ 10/2008 Zuk et al.
8’166’201 B2 4/2012 Richardson et al. 2008/0291910 Al 11/2008 Tadimeti et al.
8’194’674 Bl 6/2012 Pagel et al. 2009/0031041 Al 1/2009 Clemmensen
8,199’750 Bl 6/2012 Schultz et al. 2009/0043823 Al 2/2009 Iftode et al.
8223.668 B2 7/2012 Allan et al. 2009/0083445 Al 3/2009 Ganga
8’224’931 Bl 7/2012 Brandwine et al. 2009/0092137 Al 4/2009 Haigh et al.
8224971 Bl 72012 Miller et al. 2009/0122710 Al 5/2009 Bar-Tor et al.
8930572 Bl 82012 Brandwine ef al. 2009/0150527 Al 6/2009 Tripathi et al.
8259.571 Bl 9/2012 Raphel et al. 2009/0161547 A1 6/2009 Riddle et al.
8,265,075 B2 9/2012 Pandey 2009/0249470 Al 10/2009 Litvin et al.
8,281,067 B2 10/2012 Stolowitz 2009/0249473 Al 10/2009 Cohn
8,312,129 Bl 11/2012 Miller et al. 2009/0279536 Al 112009 Unbehagen et al.
8,339,959 Bl 12/2012 Moisand et al. 2009/0292858 Al 11/2009 Lambeth et al.
8,339,994 B2 12/2012 Gnanasekaran et al. 2009/0300210 A1 12/2009 Ferris
8,345,650 B2 1/2013 Foxworthy et al. 2009/0303880 Al 12/2009 Maltz et al.
8,351,418 B2 1/2013 Zhao et al. 2010/0002722 Al 1/2010 Porat et al.

US 9,225,597 B2

Page 3
(56) References Cited WO 2013/0113265 8/2013
WO PCT/US2014/072875 12/2014
U.S. PATENT DOCUMENTS WO PCT/US2014/072875 10/2015
2010/0046531 Al 2/2010 Louati et al. OTHER PUBLICATIONS
2010/0107162 Al 4/2010 Edwards et al.
2010/0115101 Al 5/2010 Lain et al. Invitation to Pay Additional Fees with Partial Search Report for
2010/0131636 Al 5/2010 Suri et al. PCT/US2014/072875, Jul. 1, 2015 (mailing date), Nicira, Inc.
2010/0153554 Al 6/2010 Anschutz et al. Agarwal, Sugam, et al., “Traffic Engineering in Software Defined
2010/0153701 Al 6/2010 Shenoy etal. Networks,” 2013 Proceedings IEEE INFOCOM, Apr. 14, 2013, pp.
201000162030 AL 02040 Lindenlal. 2211-2219, Bell Labs, Alcatel-Lucent, Holmdel, NJ, USA.
2010/0169467 Al 7/2010 Shukla et al. Aggarwal, R., et al., “Data Center Mobility based on E-VPN, BGP/
2010/0192225 Al 7/2010 Ma et al. MPLS IP VPN, IP Routing and NHRP; draft-raggarwa-data-center-
2010/0205479 Al 8/2010 Akutsu et al. mobility-05.txt,” Jun. 10, 2013, pp. 1-24, Internet Engineering Task
2010/0214949 A1 82010 Smith et al. Force, IETF, Standardworkingdraft, Internet Society (ISOC) 4, Rue
2010/0265956 Al 10/2010 Li . Des Falaises CH-1205 Geneva, Switzerland.
%8}8;83;8}‘32 ﬁ} }?;38}8 iglri}iln?te?tﬂél Al-Fares, Mohammad, et al., “A Scalable, Commodity Data Center
5010/0318609 Al 12/2010 Lahiri et al. ’ Network Architecture,” Aug. 17-22, 2008, pp. 63-74, Seattle, Wash-
2010/0322255 Al 12/2010 Hao etal. ington, USA.
2011/0016215 Al 1/2011 Wang Andersen, David, et al., “Resilient Overlay Networks,” Oct. 2001, 15
2011/0022695 Al 1/2011 Dalal et al. pages, 18th ACM Symp. on Operating Systems Principles (SOSP),
2011/0026537 Al 2/2011 Kolhi et al. Banff, Canada, ACM.
2011/0032830 Al 2/2011 Merwe et al. Anderson, Thomas, et al., “Overcoming the Internet Impasse through
%8} };88?%223 ﬁ} %gg“ E:.Ir)rll)bztt}? lét al Virtualization,” Apr. 2005, pp. 34-41, IEEE Computer Society.
2011/0075674 Al 3/2011 Lietal Anbhalt, Fabienne, et al., “Analysis and evaluation of a XEN based
2011/0085557 Al 4/2011 Gnanasekaram et al. virtual router,” Sep. 2008, pp. 1-60, Unite de recherché INRA Phone-
2011/0085559 Al 4/2011 Chung et al. Alpes, Montbonnot Saint-Ismier, France.
2011/0119748 Al 5/2011 Edwards et al. Anwer, Muhammad Bilal, et al., “Building a Fast, Virtualized Data
20110134931 Al 6/2011 Merwe et al. Plane with Programmable Hardware” Aug. 17, 2009, pp. 1-8,
2011/0142053 Al 6/2011 Van Der Merwe et al. VISA,Og, Barcelona, Spain, ACM.
2011/0194567 Al 82011 Shen Author Unkn “Cisco VN-Link: Virtualization-As Network-
2011/0261825 Al 10/2011 Ichino uthor Lknown , “.15¢0 (e Virtuatzation-Aware Networ
2011/0283017 Al 112011 Alkhatib et al. ing,” Month Unknown, 2009, 10 pages, Cisco Systems, Inc.
2011/0299534 Al 12/2011 Koganti et al. Author Unknown , “Citrix Launches New XenServer Release as
2011/0310899 Al 12/2011 Alkhatib et al. Market Share Growth Continues,” Oct. 6, 2010, 3 pages, Citrix Sys-
2011/0317703 Al 12/2011 Dunbar et al. tems, Inc. (http://www.citrix.com/English/ne/news/news.
2012/0014386 Al 1/2012 Xiong et al. asp?newsID=2304355).
2012/0014387 Al 1/2012 Dunbar et al. Author Unknown , “HP Web Jetadmin Integration into HP OpenView
2012/0131643 Al 5/2012 Cheriton Network Node Manager,” Feb. 2004, pp. 1-12, HP.
2012/0182992 Al . 7/2012 Cowart et al. Author Unknown , “IEEE Standard for Local and metropolitan area
2012/0233331 Al 9/2012° Voccio etal. wocovvevercecns 709/226 networks—Virtual Bridged Local Area Networks, Amendment 5:
2012/0236734 Al 9/2012 Sampath et al. P . "
5013/0007740 Al 12013 Kikuchi et al. onnectivity Fault Management,” IEEE Std 802.1ag, Dec. 17,2007,
2013/0044636 Al 2/2013 Koponen et al. 260 pages, IEEE, New York, NY, USA. _
2013/0044641 Al 2/2013 Koponen et al. Author Unknown , “Open vSwitch, an Open Virtual Switch,” Dec. 30,
2013/0121209 A1 5/2013 Padmanabhan et al. 2010, 2 pages, Cisco Systems, Inc.
2013/0132536 Al* 5/2013 Zhangetal. 709/221 Author Unknown , “Single Root I/O Virtualization and Sharing
2013/0142048 Al 6/2013 Gross et al. Specification, Revision 1.0,” Sep. 11, 2007, pp. 1-84, PCI-SIG.
2013/0148541 Al* 6/2013 Zhangetal. ... 370/254 Author Unknown , “VMware for Linux Networking Support,” month
2013/0148542 Al 6/2013 Zhang etal. unknown, 1999, 5 PP, VMware, Inc.
2013/0148543 Al 6/2013 Koponen et al. Author Unknown, “HP OpenView Enterprise Management Starter
2013/0148656 Al 6/2013 Zhang et al. Solution,” Jun. 2006, p. 1-4, Hewlett-Packard Development Com-
2013/0151661 Al 6/2013 Koponen et al. pany, HP.

2013/0151676 Al 6/2013 Thakkar et al. Author Unknown, “HP OpenView Operations 8.0 for UNIX Devel-
%8}3;8 éggg?g 2} 18@83 giltzltztlal' oner’ 1s Toolkité’ Month [IJ{I;known, 2004, pp. 1-4, Hewlett-Packard
’ evelopment Company, HP.

%8}3;8;222;3 2} }gggig %i:t;l}l/' et al. Author Unkno_w_n, “Intel 82599 10 Gigabit Ethernet Control_ler:
2013/0305344 Al 11/2013 Alicherry et al. Datasheet, Revision: 2.73,” De.c. 2011, 930 pages, Intel Corporation.
2013/0329548 Al 12/2013 Nakil of al. Author Unknown, “Intrf)duct_lon to VMware Infrastructure: ESX
2013/0339544 Al 12/2013 Mithyantha Server 3.5, ESX Server 3i version 3.5, VirtualCenter 2.5, Dec.. 2007,
2014/0003434 Al 1/2014 Assarpour et al. pp. 1-46, Revision: 20071213, VMware, Inc., Palo Alto, California,

2014/0016501 Al 1/2014 Kamath et al. USA. _ o _
2014/0195666 Al 7/2014 Dumitriu et al. Author Unknown, “OpenFlow Switch Specification, Version 0.9.0
2014/0229945 Al* 8/2014 Barkai et al. (Wire Protocol 0X98),” Jul. 20, 2009, Pp. 1-36, Open NetWOI‘kiIlg
2014/0301391 Al 10/2014 Krishnan et al. Foundation.
Author Unknown, OpenFlow Switch Specification, Version 1.0.0
FORFEIGN PATENT DOCUMENTS (Wire Protocol OXOI), Dec. 31, 2009, jy 1-42, Open Networking
Foundation.
TP 2003-069609 3/2003 Author Unknown, “Private Network-Network Interface Specifica-
1P 2003-124976 4/2003 tion Version 1.1 (PNNI 1.1),” The ATM Forum Technical Committee,
JP 2003-318949 11/2003 Apr. 2002, 536 pages, The ATM Forum.
WO WO 2005/112390 11/2005 Author Unknown, “Virtual Machine Device Queues,” White Paper,
WO WO 2008/095010 8/2008 Month Unknown, 2007, pp. 1-4, Intel Corporation.

US 9,225,597 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Ballani, Hitesh, et al., “Making Routers Last Longer with ViAggre,”
NSDI'09: 6th USENIX Symposium on Networked Systems Design
and Implementation, Apr. 2009, pp. 453-466, USENIX Association.
Barham, Paul, et al., “Xen and the Art of Virtualization,” Oct. 19-22,
2003, pp. 1-14, SOSP’03, Bolton Landing New York, USA.

Bavier, Andy, et. al., “In VINI Veritas: Realistic and Controlled
Network Experimentation,” SIGCOMM °06, Sep. 2006, pp. 1-14,
Pisa, Italy.

Bhatia, Sapan, et al., “Trellis: A Platform for Building Flexible, Fast
Virtual Networks on Commodity Hardware,” ROADS’08, Dec. 9,
2008, pp. 1-6, Madrid, Spain, ACM.

Caesar, Matthew, et al., “Design and Implementation of a Routing
Control Platform,” NSDI *05: 2nd Symposium on Networked Sys-
tems Design & Implementation , Apr. 2005, pp. 15-28, Usenix Asso-
ciation.

Cai, Zheng, et al., “The Preliminary Design and Implementation of
the Maestro Network Control Platform,” Oct. 1, 2008, pp. 1-17, NSF.
Casado, Martin, et al. “Ethane: Taking Control of the Enterprise,”
SIGCOMM’07, Aug. 27-31, 2007, pp. 1-12, ACM, Kyoto, Japan.
Casado, Martin, et al., “Rethinking Packet Forwarding Hardware,”
month unknown, 2008, pp. 1-6.

Casado, Martin, et al., “SANE: A Protection Architecture for Enter-
prise Networks,” Proceedings of the 15" USENIX Security Sympo-
sium, Jul. 31, 2006, pp. 137-151.

Casado, Martin, et al., “Scaling Out: Network Virtualization Revis-
ited,” month unknown, 2010, pp. 1-8.

Casado, Martin, et al., “Virtualizing the Network Forwarding Plane,”
Dec. 2010, pp. 1-6.

Congdon, Paul, “Virtual Ethernet Port Aggregator Standards body
Discussion,” Nov. 10, 2008, pp. 1-26, HP.

Das, Saurav, et al. “Simple Unified Control for Packet and Circuit
Networks,” Month Unknown, 2009, pp. 147-148, IEEE.

Das, Saurav, et al., “Unifying Packet and Circuit Switched Networks
with OpenFlow,” Dec. 7, 2009, 10 pages.

Davie, B., et al., “A Stateless Transport Tunneling Protocol for Net-
work Virtualization (STT),” Mar. 5,2012, pp. 1-19, Nicira Networks,
Inc., available at http://tools.ietf.org/html/draft-davie-stt-01.

Davoli, Renzo, “VDE: Virtual Distributed Ethernet,” Feb. 2005, pp.
1-8, TRIDENTCOM’ 05, IEEE Computer Society.

Dixon, Colin, et al., “An End to the Middle,” Proceedings of the 12th
conference on Hot topics in operating systems USENIX Association,
May 2009, pp. 1-5, Berkeley, CA, USA.

Dobrescu, Mihai, et al., “RouteBricks: Exploiting Parallelism to
Scale Software Routers,” SOSP’09, Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, Oct.
2009, pp. 1-17, ACM New York, NY.

Dumitriu, Dan Mihai, et al. (U.S. Appl. No. 61/514,990), filed Aug. 4,
2011.

Enns, R., “NETCONF Configuration Protocol,” Dec. 2006, pp. 1-96,
IETF Trust (RFC 4741).

Farinacci, D., et al., “Generic Routing Encapsulation (GRE),” Mar.
2000, pp. 1-9, The Internet Society (RFC 2784).

Farrel, A., “A Path Computation Element (PCS)—Based Architec-
ture,” Aug. 2006, pp. 1-41, RFC 4655.

Fischer, Anna, “[PATCH][RFC] net/bridge: add basic VEPA sup-
port,” Jun. 2009, pp. 1-5, GMANE Org.

Foster, Nate, et al., “Frenetic: A Network Programming Language,”
ICFP ’11, Sep. 19-21, 2011, 13 pages, Tokyo, Japan.

Greenberg, Albert, et al., “A Clean Slate 4D Approach to Network
Control and Management,” Oct. 2005, 12 pp., vol. 35, No. 5, ACM
SIGCOMM Computer Communication Review.

Greenberg, Albert, et al., “VL2: A Scalable and Flexible Data Center
Network,” SIGCOMM’09, Aug. 17-21, 2009, pp. 51-62, ACM,
Barcelona, Spain.

Greenhalgh, Adam, et al., “Flow Processing and the Rise of Com-
modity Network Hardware,” ACM SIGCOMM Computer Commu-
nication Review, Apr. 2009, pp. 21-26, vol. 39, No. 2.

Gude, Natasha, et al., “NOX: Towards an Operating System for
Networks,” Jul. 2008, pp. 105-110, vol. 38, No. 3, ACM SIGCOMM
Computer communication Review.

Guo, Chanxiong, et al., “BCube: A High Performance, Server-centric
Network Architecture for Modular Data Centers,” SIGCOMM’09,
Aug. 17-21, 2009, 12 pages, ACM, Barcelona, Spain.

Hamilton, James, et al., “Datacenter Networks Are in My Way,”
Principals of Amazon Series, Oct. 28, 2010, pp. 1-14.

Hinrichs, Timothy L., et al., “Practical Declarative Network Man-
agement,” WREN’09, Aug. 21, 2009, pp. 1-10, Barcelona, Spain.
Ioannidis, Sotiris, et al., “Implementing a Distributed Firewall,”
CCS’00, Month Unknown, 2000, pp. 1-10, ACM, Athens, Greece.
Joseph, Dilip Antony, et al., “A Policy-aware Switching Layer for
Date Centers,” Jun. 24, 2008, 26 pages, Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA, USA.
Kamath, Daya, et. al., “Edge virtual Bridge Proposal, Version 0. Rev.
0.1,” Apr. 23, 2010, pp. 1-72, IEEE.

Keller, Fric, et al., “The ‘Platform as a Service’ Model for Network-
ing,” month unknown, 2010, pp. 1-6.

Kim, Changhoon, et al., “Floodless in SEATTLE: A Scalable
Ethernet Architecture for Large Enterprises,” SIGCOMM’08, Aug.
17-22, 2008, pp. 3-14, ACM, Seattle, Washington, USA.

Kohler, Eddie, et al., “The Click Modular Router,” ACM Trans. On
Computer Systems, Aug. 2000, pp. 1-34, vol. 18, No. 3.

Koponen, Teemu, et al., “Network Virtualization in Multi-tenant
Datacenters,” Technical Report TR-2013-001E, International Com-
puter Science Institute & UC Berkeley, Aug. 2013, 22 pages,
VMware, Inc., Palo Alto, CA, USA.

Koponen, Teemu, et al., “Onix: A Distributed Control Platform for
Large-scale Production Networks,” In Proc. OSDI, Oct. 2010, pp.
1-14.

Lakshminarayanan, Karthik, et al., “Routing as a Service,” Month
Unknown, 2004, pp. 1-15, Berkeley, California.

Loo, Boon Thau, et al., “Declarative Routing: Extensible Routing
with Declarative Queries,” In Proc. of SIGCOMM, Aug. 21-26, 2005,
12 pages, Philadelphia, PA, USA.

Loo, Boon Thau, et al., “Implementing Declarative Overlays,” In
Proc. of SOSP, Oct. 2005, 16 pages. Brighton, UK.

Luo, Jianying, et al., “Prototyping Fast, Simple, Secure Switches for
Ethane,” Month Unknown, 2007, pp. 1-6.

Maltz, David A., et al., “Routing Design in Operational Networks: A
Look from the Inside,” SIGCOMM’04, Aug. 30-Sep. 3, 2004, 14
pages, ACM, Portland, Oregon, USA.

Mann, Vijay, etal., “Crossroads: Seamless VM Mobility Across Data
Centers Through Software Defined Networking,” IEEE Network
Operations and Management Symposium (NOMS), Apr. 16-20,
2012, pp. 88-96, IEEE, Piscataway, NJ, US.

McKeown, Nick, et al., “OpenFlow: Enabling Innovation in Campus
Networks,” Mar. 14, 2008, 6 pages.

Mogul, Jeffrey C., et al., “API Design Challenges for Open Router
Platforms on Proprietary Hardware,” Oct. 2008, pp. 1-6.

Mysore, Radhka Niranjan, et al., “PortLand: A Scalable Fault-Toler-
ant Layer 2 Data Center Network Fabric,” Proc. of SIGCOMM, Aug.
17-21, 2009, pp. 1-12.

Pelissier, Joe, “Network Interface Virtualization Review,” Jan. 2009,
pp. 1-38.

Pelissier, Joe, “VNTag 101,” May 2008, pp. 1-87.

Pettit, Justin, et al., “Virtual Switching in an Era of Advanced Edges,”
Sep. 2010, 7 pages.

Pfaff, Ben, et al., “Extending Networking into the Virtualization
Layer,” Proc. of HotNets, Oct. 2009, pp. 1-6.

Rosen, E., et al., “Applicability Statement for BGP/MPLS IP Virtual
Private Networks (VPNs),” The Internet Society, RFC 4365, Feb.
2006, pp. 1-32.

Shenker, Scott, et al., “The Future of Networking, and the Past of
Protocols,” Dec. 2, 2011, pp. 1-30, USA.

Sherwood, Rob, et al., “Can the Production Network Be the
Testbed?,” Month Unknown, 2010, pp. 1-14.

Sherwood, Rob, et al., “Carving Research Slices Out of Your Pro-
duction Networks with OpenFlow,” ACM SIGCOMM Computer
Communications Review, Jan. 2010, pp. 129-130, vol. 40, No. 1.
Sherwood, Rob, et al., “FlowVisor: A Network Virtualization Layer,”
Oct. 14, 2009, pp. 1-14, OPENFLOW-TR-2009-1.

US 9,225,597 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Spalink, Tammo, et al., “Building a Robust Software-Based Router
Using Network Processors,” Month Unknown, 2001, pp. 216-229,
ACM, Banff, CA.

Tavakoli, Arsalan, et al., “Applying NOX to the Datacenter,” month
unknown, 2009, 6 pp., Proceedings of HotNets.

Touch, J., et al., “Transparent Interconnection of Lots of Links
(TRILL): Problem and Applicability Statement,” May 2009, pp.
1-17, IETF Trust, RFC 5556.

Turner, Jon, et al., “Supercharging Planetl. ab—High Performance,
Multi-Application Overlay Network Platform,” SIGCOMM-07,
Aug. 27-31, 2007, 12 pages, ACM, Koyoto, Japan.

Turner, Jonathan S., “A Proposed Architecture for the GENI Back-
bone Platform,” ANCS’06, Dec. 3-5, 2006, 10 pages, ACM, San Jose,
California, USA.

Wang, Anjing, et al., “Network Virtualization: Technologies, Per-
spectives, and Frontiers,” Journal of Lightwave Technology, Feb. 15,
2013, 15 pages, IEEE.

Wang, Wei-Ming, et al., “Analysis and Implementation of an Open
Programmable Router Based on Forwarding and Control Element
Separation,” Journal of Computer Science and Technology, Sep.
2008, pp. 769-779, vol. 23, No. 5.

Wang, Yi, et al., “Virtual Routers on the Move: Live Router Migration
as a Network-management Primitive,” SIGCOMM 08, Aug. 17-22,
2008, 12 pages, ACM, Seattle, Washington, USA.

Yang, L., et al., “Forwarding and Control Element Separation
(ForCES) Framework,” Apr. 2004, pp. 1-41, The Internet Society
RFC(3746).

Yu, Minlan, et al, “Scalable Flow-Based Networking with
DIFANE,” Aug. 2010, pp. 1-16, in Proceedings of SIGCOMM.
Portions of prosecution history of U.S. Appl. No. 14/214,561, Aug.
20, 2015, Tubaltsev, Ariel, et al.

Lin, Pingping, et al., “Seamless Interworking of SDN and IP”
SIGCOMM 13, Aug. 12-16, 2013, pp. 475-476, ACM, New York,
USA.

Mechtri, Marouen, et al., “Inter and Intra Cloud Networking Gateway
as a Service,” 2013 IEEE 2" International Conference on Cloud
Networking (ClouNet), Nov. 11, 2013, pp. 156-163, IEEE.

* cited by examiner

U.S. Patent

Dec. 29, 2015

100

Sheet 1 of 25

External Network

Logical L3 Router

115

105

Logical L2 Switch A

i

i

VM1

VM2

US 9,225,597 B2

110

Logical L2 Switch B

E

i

VM3

VM4

Figure 1

US 9,225,597 B2

Sheet 2 of 25

Dec. 29, 2015

U.S. Patent

B e e e e . |

Aemaren €1

\ 1SOH Aemoieyy

7 24N

Kemajen) €T

1S0H @EB@G/

JI0MION] [RUIANXH]

JI0MION poSeuRy
0€T €Tt
— / _ 1 __
1T e 0IC 02
a7 n 471 g7
[} Vil ¥ INA E [Vil
. °
L] [
s
€ NA TNA TINA
1A ‘ ERT 44N
¢ 1S0H TISOH 1 180H
354 0ve geT
_achmQ 409 _ _qugQ J04g _ _ uowde(] 4Dy _

Aemaren ¢

150 Aemoery /

U.S. Patent Dec. 29, 2015 Sheet 3 of 25 US 9,225,597 B2

305

Input Translation
Controller

310

Logical Controller

315 320
N\
Physical Physical
Controller 1 Controller 2

345
4

Gateway Host 1

MFE
Host 1 Host 2 Host 3 Host 4

L3 GW
‘ MFE | | MFE | w BGP | MFE | | MFE |

MFE

L3 GW
w/ BGP

350

Figure 3

U.S. Patent Dec. 29, 2015
________ 305\
: Network Configuration :
| ! Input
1 (API) \——- Translation
! ! Controller
: Logical Control !
‘. Plane Data _ ,'
"—T_—'_ IC—:~|‘\‘ 310
. ogical Contro ~
: Plane Data 1 \
. l
: | Logical
| Logical Forwarding :' ~7 Controller
1 Plane Data |
! I
I
. |
: Universal Physical Control !
N Plane Data ,'
. ::::-i:::: - 315
rd -~

Universal Physical Control ‘.

Plane Data 1
|

1

Customized Physical Control !
Plane Data .

AN ’

S

f
|
]
I
] P
]
1
|
]

e

————t e —
— -
-~

Customized Physical Control
Plane Data 1

’

Physical Forwarding
Plane Data

_,.___
1
)

|
1
I
|
1
1
|
|
L

Physical
Controller

325

N

| ———

MFE at VM
Host

MFE at
Gateway
Host

345

Sheet 4 of 25

- -

BGP Configuration

]
]
1
]
1
1
1
'\ BGP Data Tuples

BGP Data Tuples

BGP Configuration
File

Figure 4

US 9,225,597 B2

N

Logical
Controller

N

Physical
Controller

345

N

Gateway
Host

U.S. Patent

500

Dec. 29, 2015 Sheet 5 of 25

US 9,225,597 B2

505

Receive instructions to create logical router with
one or more ports connecting to external network

v

510

Select gateway host machine(s) for each port

!

Generate, for MFEs on host machines that send
packets through logical router, flow entries to (i)
implement distributed logical router and (ii) send
packets forwarded by logical router to external
network in tunnels to gateway host machines that
implement the uplink ports of logical router

515

!

520

Generate, for MFEs on gateway host machines,
flow entries to forward packets to logical router
port implementation on host, to NIC, and to other
MFEs at VM hosts

/

!

525

Generate data tuples for routing table for
handling packets at each port

!

530

For each port, identify address(es) of external
network router(s) with which to peer

!

Generate data tuples to define routing protocol
on selected host machines

!

Distribute generated data tuples and flow entries
to selected host machines

535

540

End

Figure 5

U.S. Patent Dec. 29, 2015 Sheet 6 of 25 US 9,225,597 B2

Figure 6

I 605 | ! 10 | | 615 |
| I I
] 1 |
: LR - Uplink 1 | : LR1 - Uplink 2 | ! LR5 - Uplink 2 |
| 1 1
: 606 | : 611 1 : 616 I
1] I
: Gateway Host 1 | : Gateway Host 5 1 : Gateway Host 9 |
i 607 | 612, !
I 1]
] I
| LR2 - Uplink 2 / | LR2 - Uplink 4 / | LR1 - Uplink 3 |
1] 1
! LR5 - Uplink 3 ! ! LR5 - Uplink 1 ! | LR6 - Uplink 2 :
: Gateway Host 2 1 : Gateway Host 6 | / Gateway Host 10 I
! : ! | ! :
(, ! I I 612 . I
| LR3 - Uplink 2 | 1 | | LR2 - Uplink 5 |
I :] 613 :] :
1 | - |
| 608 : | : | 618 :
| Gateway Host 3 . | Gateway Host 7 | 1 Gateway Host 11 |
1 | |
]] |
| | 1
| 1 1
: : : LR& - Uplink 1 : : Gateway Host Cluster 3 :
[| - Lsmmrencuners a
! 609 : ! 614 l
| Gateway Host 4 ! | Gateway Host 8 ! v . T TTTT -i
I Y ! I Y | 1 625 I
: Gateway Host Cluster 1) : Gateway Host Cluster 2 | : !
——————————————— 4 b ' LR2 - Uplink 1 |
! 1
[T TTT TS ! 626]
20 ! — 1
! _ : | Gateway Host 15 |
| | |
| LR3 - Uplink 3 : ! !
| 1 | LR4 - Uplink 1
i 621 : . : l
| Gateway Host 12 1 : @ :
: ' 1 Gateway Host 16 1
) 1 628 : !
! LR6 - Uplink 3 ! | :
LR4 - Uplink 3 1
! o N |
' ' ! LR6 - Uplink 4 [
! Gateway Host 13 !] P I
623 \ ' | Gateway Host 17 !
I 1629 I
| LR2 - Uplink 3 ! i |
: '
- LR4 - Uplink 2
! LR3 - Uplink 4 ' ! m !
: Gateway Host 14 | ! LR1 - Uplink 4 !
: : 1 Gateway Host 18]
| 1
1
: Gateway Host Cluster 4 | : :
o o o - e — -l I I
: 630 :
|
! Gateway Host 19 :
| 1
1 1
| I
! 1
L

US 9,225,597 B2

Sheet 7 of 25

Dec. 29, 2015

U.S. Patent

/ 24n3LJ
St Y6L _ (S)OIN 00 150H
S90IAI8S JBYI0
N
...... Pom] | e e
!]
St | e
Z 1oy [ea1bo < _ >
- aoedssaweN < “ > o6pLIq pabeus)y
06L 8L _ - > _
— £ G > 09L
ot _ SINPOW [PUISY ﬁ....
. “ : O0pL Iuews(d bupsemioy
“ :
1
1
|

| Jo)noy |eoibo

- aoedsaweN

A

€3L

soll4
Byuod dog

wiosAs ol 1s0H

e ST

H L\
[JoIPon JojeIoURD) sa|qeL
- Snjels yyeeH ByuoD dog 4 oseqeeq J0s53001d MO}
_ i JoNUON JOYUOW 1oAsINeY 4 empony |
[aseqeleq uoneInBijuo) |09010.d MO[
b--: » 4
1 uowaeq uowaeq ' ¥ uoweeq
1 Ageneay ybiH aoedssweN uowae(sseqeleq swe|g Buipremio
1 . G
1

£0L

JajjoRuo) |eoisAyd

€SL

0sL

U.S. Patent Dec. 29, 2015

< Start >
800

N) 4

Sheet 8 of 25

805

Receive modification to database tables
defining L3 gateways implemented by logical
router port with BGP to run on host machine

810

Is container for
affected L3 gateway
operating on host
machine?

A

815
L

US 9,225,597 B2

Create container for L3
gateway on host machine

820

Routing table already
defined according to
configuration in tables?,

840

825

Generate or modify routin:
table for L3 gateway

(e}

v

Install routing table in
container

N

Start BGP daemon

Is BGP daemon

in container started in container?
845
BGP daemaon configuration
file already defined according to
received tables?
850

N

Generate configuration file from database
tables and store in host machine file system

855 \ 4

Notify BGP daemon to read configuration file

Yes

\ D

‘ Start ’

Figure 8

U.S. Patent

Dec. 29, 2015 Sheet 9 of 25

Start

US 9,225,597 B2

900

905

Receive BGP configuration

v

910

Install configuration

!

915

Identify, from configuration, BGP neighbors to which
to advertise routes

v

920

Open BGP session with identified neighbors

v

925

Identify, from configuration, routes to advertise

v

930

Generate packets for each identified neighbor

!

935

Send generated packets to local MFE to be sent out
over external network to physical router neighbors

End

Figure 9

US 9,225,597 B2

Sheet 10 of 25

1S0OH WA

1IS0H NA

m—n:Z

JTOMION] POSEURIA

0£01

§ 1804 MO

_ (dDE yits)
_ TIN ooedsowreN
7

N/ 60T woumo

_ _ (dD)
_ HIN ooedsotue N
AV

Dec. 29, 2015

U.S. Patent

0501
TT'TLT T'T'1°91 1181
o ¢ omoy 7 Iomoy 1 oMoy
SLOMJON] [BUIXF] NIOMION [BUINXT SLOMION] [BUINXF
SL01 7 ooff
0L0T uoneimawa[dwy [Bo1sAyg
NIOMION [E0150T
_HZ NA| o0® _NE\/_ _Z §>_ [1]] _ TINA
ITEIIENS V PIRS
T B80T TIIe080 T
0101 YT 001 $T/0°0°0T SO0l
_ N0y €7 1507 _/
01 24n31] Va Sl01

0001 HOMIN

[eu1xyg

0201

US 9,225,597 B2

Sheet 11 of 25

Dec. 29, 2015

U.S. Patent

I9JSTY) ID[[OJU0))

11 24n31]
oo - JIOMIN |
“ poseury |
| 1SOH INA 1SOH WA 1S0H INA !
1
|
|
1
|
|
1
]
|
1
]
|
1
] p—
_ E&O § 1ISOH MD /V\ Se0l IS0 D
! (dod unm) (dDd ma) (dDd W)
_\ EE 14 soedsoweN | ddW oedsowieN [T~ HdN soedsoweN |
S¥0T | AN cCo1 _
! ®. 001 [b o ¥ |
. \ . |
| . 0vor PT/T0°01 XUSId oty !
! ' ¥Z/0°0°01 XU2Id - _
- s : T'T°1°91 reed 1
I3 s '
| B . / - T Tg1 100d “
Y ‘0°01 X191
“ R S ik “
_ v2/0°0°01 XYo1d 1 , "
| : _ - SOTI _
_ SITI . “
| —_
I 0011 “
!]
! I
!]
|
| |

US 9,225,597 B2

Sheet 12 of 25

Dec. 29, 2015

U.S. Patent

I 21n31y

1SOH WA

HAW

1SOH WA

1SOH WA

EB@

-d (dDFgyps)
=« ¢ oorvdsoweN

PTUT 00T XUOLL
v2/0°0°01 X2l

¢ell

v

SLOT
€ 100y
FIOMIDN] [BUINXT

§ FEOH MO
(dO9 yua)
HAW =4 7 ooedsoumn
..
[]

PO/T°0°01 XYoid
$2/0°0°01 XJaId

S
Yo/ I001 Xiold
$T/0°0°01 XJaId

dHd

JLOMION “
poseue]y |

V\ <eol1 150 MD

(dDg WiM)
CE'4¢ +F~ 4 1 ooedsoweN

dbd

[]
[]
1
1
[]
[]
[]
' YT 00T XUoid
' pT0001 xyong | P SN[4O
y
0121
00T
7 1oy
MHOEDZ ﬂmabu&mm

c901
[Moy
JIOMION [BUINXY

c0cCI

US 9,225,597 B2

Sheet 13 of 25

Dec. 29, 2015

U.S. Patent

€1 2anSLy

e e TOMION |
| poSeuepy “
“ 1S0H WA 10H WA 1SOH WA !
| [
| I
| I
| I
| I
| I
| I
| |
I

—~—] I
“ W] S miot—f RoHA |
I
_ (dDd wm) (dDd yim) e be s (@D upm) !
] ddN ¢ doedsowreN 4N 7 doedsowreN ddN - P> 1 coedsowen [!
| T Y /“/
I

€ ooy
NIOMION [BUIIXT

o

JIOMISN [eUIIXT

7 I9moy

" S901
[oy
FromMQN [euIXg

I'T°0°0T 38d

/

[]
’
oogl

US 9,225,597 B2

Sheet 14 of 25

Dec. 29, 2015

U.S. Patent

pI 24nS14
JIOMION “
poSeueip |
]
1ISOH WA 1SOH WA 1ISOH WA |
|
]
]
|
]
]
|
]
]
|
]
BSOHMD | 1
|
Seobkod (@DGUN) Setbodo(dOg M) (dOF W) !
ddN, ¢ ooedsoweN ddN - P 7 ooedsowen ddN T ooedsoweN “
=~]
]

€ ooy
JIOMION] [BUIOIXT

\ k 3
v 7100y

0LOT | sudhwion Teusdyxg

1]
€1°0°01 3s°d L
I'1°0°01 3s°d

OlvI
SOVl

1 Iomoy
SIOMION] [BUIOIXT

US 9,225,597 B2

Sheet 15 of 25

Dec. 29, 2015

U.S. Patent

1
— FIOMIAN |
0s¢cl —_ poseuBpy |
SPel SISOH WA 1
1
1
1
PLST FOST 6SSI “
___ l __ __ / __ | !
0LST [wor mo COST 1s0H MD) 09T [wommo goeT [ormn |
(dDd yuas) (dO4 y1a) (dDH qums) 1
AT 2oedsatueN 74T 2oedsomeN AT 2ordsaweN| “
1
(dOH M) (dOT M) (dDH YHA) (dOH M) 1
HIW 1971 2oedsaweN HIW 14T 2oedsaeN| HIN 1T 2oedsoweN HIW 14T 2oedsauren] 1
1
./ /.) /---l _J
L9ST \ LSST
'rrel
prd [Iomoy
M‘N Nx:n%.nm GLS | FromaN reurdixg
¢ gorjeuawdduy 1e01SAYJ
ONA| e0@ |d NA ONA| o0® [£ WA NINA| @@® |TNA NWA| e0® [T NA
[CREENENY BRIIENY [SIEENES VIONAMS
___—lapise 71 [e0180] 71 eot50] Z1reaso [T~
CeCT P10 1L

/

Y491

0¢sl

7 lomnoy ¢ [eo18o]

P AN ETNG
[euIoIXy

~—~——_
0¥ST

[e2180T { JUBUDL

P00l 0IST vTrool PTO001 SoST
0¢sT

| 1oy €7 [801807]

/

/

00¢T SHOMIDN

[PUINIXT

0cel

SIST

[eo180] v ueua],

US 9,225,597 B2

Sheet 16 of 25

Dec. 29, 2015

U.S. Patent

91 24nSty
........... YomaN !
J5eue
S1SOH WA posriEN Y
pLST 196 IS 68S1
/ \ [[
\ ISOH MD ISOH MD \ IS0H MD GeSl \ 1ISOH MDD
(dDd yHm) (dDd yHm) (dOY YHm)
2T 2oedsotueN 24T 2oedsaweN AT 2ordsawreN
(dD YHm) (dDU ym) (dO Pia) (dDU)
4N 1T soedsaweN ddN- T[T 9oedsawenN 44N 1T 9oedsaweN]| 44N T[T 9oedsawenN
A3 | — 4 A 4 N
PLTSTao8d TTTST409d LSST
: Y/TO 0T XUd1d PTT0TT XgaIg
0o L
e soadsorn CO0 T XHO TTTST 090
TTT°ST 309d a1 N AT ooedsoureN PT/TOTT XTI
PO 11 XgoId - . vT/O0TT xwﬁm
FT/0°0' 11 XJ2Id T'T'T'ST 499d 231 doedsoweN
7T doedsateN ' . FT/1°0°01 XJaid .
. vT/0°0°01 XyoId L A
I'T'T°ST199g NT0RdWeN/ -* /o001 xyord
PZ/T0°0T XU1d o FZ/0°0°01 Xgoid
¥2/0°0°0T Xy=id . 1q71 2oedsatueN
[T 2oedsoteN SRR .
1
0091
IDISTI[) IS[[ONU0))

US 9,225,597 B2

Sheet 17 of 25

Dec. 29, 2015

U.S. Patent

LI 24n31.]
o T somjap |
! paSeuey “
“ SISOH WA !
1 !
] 1
| 1
| 1
_ “
]
!
“ 1S0H MO 1S0H MD 1S0H MO WSOHMD |
“ (dDd yna) (dDd ya) (dOd) “
1 * T|ogT 2oedsaweN . T |21 eoedsoureN] T 2oedsoweN “
! .
1 £ v |
‘ (dOT yia) (dDY L) (dO L) (dHU) i
“ mEH\.n = 417 2oedsoweN AN, F~ LT soudsouren mmzzs P« 11T 9ouedsoweN 1947 2oedsowey]| I
| S — |
! ‘ OOI - | I - —— |||||||||||||I_
e e o ——— L A e R i I —— — — — — ——— ——————
s\ \)]]
s N\ voT001 XgaId 19T 1001 Xgol e s 1 PT/T001 XyoId | TYdT
s \Y "I andg P/ O01 X4 [T AT (IR . e ang
s N FY0001 X54d | ¥ SN pz/0'001 ¥yaig | ¢ sn[I08 VA [roroorswed Tranf ool o PLO00L Xyoid [T SN
s {| PT/00°01 XJoid [T SN PR
.) s |0
[] [)
s\ R
1\ v\
11 s s\ 0
Tt 2 - L]
T ot x| < sl aomp b P01 xeid [z] o1\
PO/TOTT XIJoId ! < . .. $2/0°0' 11 XJ2Id |1 SN A
FT/0°0TT XJ2Id 4 4 v 4

CLST

T IOV JTOMION [RUINXT

US 9,225,597 B2

Sheet 18 of 25

Dec. 29, 2015

U.S. Patent

81 24n3L]
e - - TS HOMON |
ogeue
| SISOH INA POSEEN |
1]
“) “
I 65¢1 !
] |
1 / I |
| — — |
I 1ISOH MD | G$OGT SOHMD 1ISOH MD / "\ GG¢J \ SO MD [
“ (dDd) (dDI Unm) \ T dDOdUin) “
] _H AT oordsawrepN| l—H 741 2oedsomeN / A \\ AT 9oedsotne N |
|]
I - o I
(dOHd Uam) - * (dDH i) (dDd qHm) o = o Z]o (dDY UHR)
“ ddN 1T 2oedssurenN EEALS 1T doedsoureN EELA 1971 2oedsameN - M\m - [T 2oedsauren “
| N AN 7 AN |
I // // I
LIST LEST
\J
| 12mMoy

’ FIOMION [eUIXH

T'T°0°0T 9891 T 9sed L1001 389

7 7

0181 \ SBL)
]

c081

U.S. Patent

1900

Figure 19

Dec. 29, 2015 Sheet 19 of 25 US 9,225,597 B2
1905
Receive instructions to create logical router with /
one or more ports connecting to external network
¢ 1910
Select gateway host machine(s) for each port
¢ 1915
Generate flow entries for MFEs on VM and
gateway host machines and data tuples for
routing table for handling packets at each port
¢ 1920
Distribute generated data tuples and flow entries
to selected host machines
¢ 1925
For each port, identify address(es) of external
network router(s) with which to peer
¢ 1930
Generate and install BGP configuration using
identified external routers, logical router
configuration, and selected host machines
¢ 1935
Open BGP session with neighbor external /
routers
¢ 1940
Generate packets for each neighbor
¢ 1945
Send generated packets to the external network /
routers
End

US 9,225,597 B2

Sheet 20 of 25

Dec. 29, 2015

U.S. Patent

J10M1aN paSeuB

SISOH WA

0L0T

(dDT piay)
TSN T[0TV

N\ \ 1S0H D

JIN — ooedsowme N

N

\ 0P0T 150H MD

TIN — 2oedsoweN

\ SE0T wowmo
JIN — ooedsowen

$90¢

2oy
SLOMION [BUISYXT

T IONAS

__—|z1ea801

0102 vUIOTI

JI0MIDN [BO1S0T
NINA| o0® | T NA NNHNA| o000 [NA
V PIAS
TT B0 | T~
P00l S00T
IoMOY €7 [eJ150T
~——

0Z 21n3LJ 0002
0202

SIoMIaN
[euIo)Xg

US 9,225,597 B2

Sheet 21 of 25

Dec. 29, 2015

U.S. Patent

IQISN[) IA[[ONUO))

17 24314

... SroAoN poFeuRly |
|
|
$1S0H WA “
|
1
) / \ |
|
[— I 1
@om\ 1WOH MO \ OV0Z 1SOH MD / 0T weHMO|
(dDg yna) (dO9 yim) (dDg pis) !
EEQY soedsowe N EEL soedsoweN EEL soedsoweN “
|
V.. » S01¢C . 4 I
. . Lot |
= A .o 1

v)R(] SJUO)) P v)R(J U0 L. —
[aivin /. nwnn/ e R |
- .. -a .- .? _
S01T = — S012 “
0Z02 “
1
|
|
1
|

PT/T0°TT Xyald
FT/0°0'CT X1J2Id

PO/TOTT XY2Id |

4--.---"""4'-

pZ/007T xyarg | ¢ SN|dOE

P01 XYoL

vuw\o.o.ﬁ xyorg |1 SN|dOH
$90T

INMNOY FJTOMISN [BUIIXH

US 9,225,597 B2

Sheet 22 of 25

Dec. 29, 2015

U.S. Patent

cc 24n3l
o .m|.mmm. .. YIOMIAN poFeny
SISOH WA
1 ’ A
4
’
IO IO[OITUO) .
lllllllllll 4
Ety S
55 nLn— =TT lv
W2 1SOH MO ¢/ OW0CT 1soH mo \ 105 MAD
~ =le = | (IO 4HA) Ty ¥ S ORI (dOd pm)
mn:\mn soedsoureN mn:\/m [P ooedsoweN HAW 1 soedsowe N
\ X / . u\\ =

A} [
T 1m0y YomoN redrxyg
L)

L] (Y
0 .
. [
‘00 2SO
TO0TL A FR——
’ y
7]
WOA\N OﬁNN []

..
|

US 9,225,597 B2

Sheet 23 of 25

Dec. 29, 2015

U.S. Patent

£T 2an31

N v ¥

00¢c
ceed 0T¢eT
20BJIoIU]
o8e101§ 181§ TonnqIIsI(q
Y4 X4 0l¢e 1€C
< ! yoyendwon eig [>
D01AIDS dDF Swmddeyy o1qe], JuomuSISS Y 1SOH
0cee i T4
aoegIoU] s0eC
JIOMION [BUISIXE soeyrouT nduy
= i Io[onuo))

US 9,225,597 B2

Sheet 24 of 25

Dec. 29, 2015

U.S. Patent

pg 2anS1q
T T T T T T omgon
— pageusy “
08¥¢
IDISN]D) IO[[O[UO))
T 1
Eo\....\ oD
\ e a9
\ Syuo) m@m \ Pinoy anoq \ Smm_ ETTOR) ele(] SYU0)
Lt \ N0y Eo&oq \ bgom 1e1507]
— ‘l _ : — ‘ — . l'|
0rPe ISOH MD IvC 1S0H MD 01¥¢ SOH MD SOvT 1IS0H MD
{dDd i) (RERoRD) ¢ 1) (ReRdED) ¢1) ARERoRD ¢1)
HIW aoedsaureN // HIN YT 2oedsoureN 4N 19T 2oedsaweN N 1T 2oredsaweN
7 7 AN
0ere
Sere
T Jo1n0y
JIOMION [BUISING

US 9,225,597 B2

Sheet 25 of 25

Dec. 29, 2015

U.S. Patent

¢z 2anS1y
0rsT
AN
cocz | 01T 0¢€sT
AN _ AN N\
NI0MIIN $901A9(] nduy (Shrun WOd
. 3urssooo1g
N
¢0<T
AIOWON
sao1a0(q IdinQ e 23e101§
_ < O
| STST
N\ gece
SPSe

00T

US 9,225,597 B2

1
MANAGED GATEWAYS PEERING WITH
EXTERNAL ROUTER TO ATTRACT INGRESS
PACKETS

BACKGROUND

In physical L3 networks, such as the Internet, routers
exchange routing and reachability information using various
routing protocols, including Border Gateway Protocol
(BGP). A primary functionality of BGP is to allow two routers
to exchange information advertising available routes or
routes that are no longer available. That is, a first router may
use this protocol to inform a second router that packets for a
given IP address or IP prefix can be sent to the first router. The
second router can then use this information to calculate
routes.

Within some managed virtualized networks, routes are
calculated by a network controller and pushed down to the
forwarding elements that handle routing within the managed
network. As the controller directs how these forwarding ele-
ments will route packets, there is no need for the exchange of
routing information between the forwarding elements. How-
ever, these managed virtualized networks may send and
receive traffic through external networks. This currently
requires an administrator to manually provide routes to the
routers in the external network.

BRIEF SUMMARY

Some embodiments provide a network control system that
enables logical networks operating in a network managed by
the network control system to peer with and advertise routing
information to physical routers outside of the managed net-
work. In some embodiments, the logical networks contain
logical routers at least partially implemented in managed
gateways, and these gateways use a routing protocol (e.g.,
Border Gateway Protocol) to peer with the external physical
routers. When multiple managed gateways implement the
logical router (or at least the portion of the logical router that
interfaces with the external network), these multiple gate-
ways may separately advertise the same routes to an external
router in some embodiments, thereby allowing the external
router to distribute traffic for the advertised destinations
across the multiple gateways.

A logical router, in some embodiments, connects a set of
logical switches to which virtual machines logically attach.
Each logical switch represents a particular set of IP addresses
(i.e., a subnet), and is implemented in the managed network
across a set of managed forwarding elements to which the
virtual machines physically connect (e.g., through virtual
interfaces). In some embodiments, the logical routers are
implemented in a distributed fashion as well by the managed
forwarding elements that connect to the virtual machines.
However, when the logical router also connects to the external
network via one or more ports, these connections to the exter-
nal network are implemented through the use of one or more
gateways. The gateways, in some embodiments, are respon-
sible for both sending data traffic from the managed network
to the external unmanaged physical network and processing
traffic sent from the external network into the managed net-
work.

In some embodiments, a user (e.g., an administrator) con-
figures a logical network, including a logical router with one
or more ports connecting to the external network, for imple-
mentation within the managed network. In addition, the user
may specify that the logical router, via these ports, should
peer with physical routers in the external network in order to

10

15

20

25

30

35

40

45

50

55

60

65

2

exchange routing information. Upon receiving the logical
network configuration, a network controller (or controller
cluster) responsible for managing the logical router selects a
set of gateways for implementing the connection to the exter-
nal networks. In some embodiments, when these ports of the
logical router have been designated for peering with the exter-
nal routers, the network controller assigns each such port to a
different gateway. In some embodiments, these gateways are
spread across clusters of gateways in the network, such that
each port is implemented in a different failure domain.

The selected gateways peer with the external routers using
a routing protocol, such as Border Gateway Protocol (BGP).
In some embodiments, the controller generates routing pro-
tocol data based on the logical network configuration. For
each port of the logical router that faces the external network,
the controller identifies (i) the set of external routers with
which the gateway implementing the port will peer (that is, its
neighbors) and (ii) the set of routes that the gateway imple-
menting the port will advertise. These routes may be simply
the IP prefixes representing the logical switches that connect
to the logical router, or may additionally include other routes
input by the user or dynamically generated by processes that
implement the logical router. In some embodiments, different
ports of the logical router may advertise their routes to dif-
ferent external network routers. Once the network controller
generates this data, along with the routing table data for the
logical router implementation in the gateway, the network
controller distributes the data to the gateways (e.g., through a
hierarchy of network controllers).

In some embodiments, the gateways on which the logical
routers are implemented are host machines grouped in clus-
ters, allocated for hosting logical routers and other services
for logical networks. These gateway machines also include
managed forwarding elements, which serve as tunnel end-
points for packets sent to and from the managed forwarding
elements on which the VMs reside. Some embodiments
implement the logical routers within virtualized containers
that have the ability to store a routing table, such as
namespaces. In addition, some embodiments operate a rout-
ing protocol application, or daemon (e.g., a BGP daemon) in
the namespace. In some cases, a gateway host machine may
have several namespaces operating different logical routers,
some or all of which include a routing protocol application for
peering with the external routers.

One or more daemons may operate on the gateway host
machine outside of the namespaces (e.g., in the virtualization
software of the gateway) in order to receive data tuples that
define both the routing tables and the routing protocol con-
figuration for a particular namespace. This daemon or dae-
mons operate to instantiate the namespace, provision the
namespace with the routing table, and start the routing pro-
tocol application in the namespace. In addition, the
daemon(s) generate a configuration file for the routing pro-
tocol application in some embodiments, and store the con-
figuration file (e.g., in a file system of the host machine) for
access by the routing protocol application.

Upon installing its configuration file, the routing protocol
application begins communication with the external router. In
some embodiments, the application behaves in the same way
as a standard physical router would in terms of its exchange of
information with its neighbors. For example, the BGP dae-
mon of some embodiments opens a BGP session with each
router identified as a neighbor in its configuration, sends
keep-alive messages as specified by BGP, and advertises its
routes to the identified neighbors via BGP packets. In some
embodiments, the BGP daemon also receives BGP packets
sent by its neighbors, and uses these packets to identify

US 9,225,597 B2

3

routes. The BGP daemon of some embodiments either installs
the routes in its local routing table (i.e., within the same
namespace), pushes the routes up to the network controller so
that the network controller can calculate new routing tables
for the gateway routing tables implementing the logical
router, or a combination thereof. In other embodiments, how-
ever, the advertisement of routes only works in one direction,
with the BGP daemon sending out routes to its neighbors but
not installing routes received from those neighbors. That is,
the BGP daemon neither pushes the received routes up to the
network controllers nor installs the routes in the routing table
at the local gateway.

In some cases, multiple gateways that implement the same
logical router (e.g., implementing different ports) may adver-
tise the same routes (e.g., to reach VMs on a particular logical
switch, or to reach a public IP shared by those VMs) to the
same external router. The external router, in this case, will
view these multiple gateways as equal-cost next-hops for
packets sent to the advertised addresses. As such, the external
routers in some embodiments spread packets sent to those
destinations across the various gateways that advertise the
routes. The external routers may use any of a variety of
different equal-cost multi-path (ECMP) techniques to deter-
mine to which gateway a packet should be sent.

In the above-described embodiments, the routing protocol
application resides inline. That is, the application operates on
the gateway, which is the location through which packets are
sent. In some embodiments, however, the network
controller(s) act as a route server for the gateways, and the
routing protocol application resides on the controller. In this
case, the routing protocol configuration is not distributed to
the gateways by the controller, but instead used to instantiate
the routing protocol application on the controller. The con-
troller then advertises the routing information to the external
routers (and potentially receives advertised routing informa-
tion from the external routers). This advertised information
informs the external routers as to which gateways to use for
which routes. As in the inline case, the external routers may
use ECMP techniques to distribute packets sent to the logical
network between the several gateways.

The preceding Summary is intended to serve as a brief
introduction to some embodiments of the invention. It is not
meant to be an introduction or overview of all inventive
subject matter disclosed in this document. The Detailed
Description that follows and the Drawings that are referred to
in the Detailed Description will further describe the embodi-
ments described in the Summary as well as other embodi-
ments. Accordingly, to understand all the embodiments
described by this document, a full review of the Summary,
Detailed Description and the Drawings is needed. Moreover,
the claimed subject matters are not to be limited by the illus-
trative details in the Summary, Detailed Description and the
Drawing, but rather are to be defined by the appended claims,
because the claimed subject matters can be embodied in other
specific forms without departing from the spirit of the subject
matters.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the
appended claims. However, for purpose of explanation, sev-
eral embodiments of the invention are set forth in the follow-
ing figures.

FIG. 1 conceptually illustrates a logical network architec-
ture of some embodiments that includes a logical router.

FIG. 2 conceptually illustrates a physical implementation
of the logical network of FIG. 1.

40

45

4

FIG. 3 conceptually illustrates a network control system of
some embodiments for provisioning managed forwarding
elements, 1.3 gateways, and routing protocol applications in
order to implement logical networks and enable the logical
routers of those networks to peer with external routers.

FIG. 4 conceptually illustrates the propagation of data
through the hierarchical network control system of some
embodiments.

FIG. 5 conceptually illustrates a process of some embodi-
ments for generating and distributing data in order to imple-
ment a set of connections between a logical router in a man-
aged network and an external network.

FIG. 6 conceptually illustrates five separate clusters of
gateway hosts, and the logical router ports (referred to as
uplinks) implemented on those gateway hosts.

FIG. 7 conceptually illustrates a software architecture of
some embodiments for a gateway host machine.

FIG. 8 conceptually illustrates a process of some embodi-
ments for setting up or modifying a [.3 gateway on a gateway
host machine.

FIG. 9 conceptually illustrates a process of some embodi-
ments performed by the routing protocol application (e.g.,
BGP daemon) of some embodiments in order to advertise
routes to external routers for an L3 gateway.

FIG. 10 illustrates both a logical network and the physical
implementation of that logical network in a managed net-
work.

FIG. 11 conceptually illustrates the provisioning of BGP
daemons in the three namespaces on the gateway hosts of
FIG. 10 by a controller cluster that operates to control the
managed network.

FIG. 12 conceptually illustrates the BGP Update packets
sent by BGP daemons in the namespaces according to some
embodiments.

FIGS. 13 and 14 conceptually illustrate the path taken by
traffic ingressing into the managed network of FIG. 10.

FIG. 15 illustrates two logical networks and the physical
implementation of those logical networks in a managed net-
work.

FIG. 16 illustrates the provisioning of BGP daemons in
seven namespaces of FIG. 15 by a controller cluster.

FIG. 17 conceptually illustrates the BGP Update packets
sent by the various BGP daemons of FIG. 15 to an external
router, once the daemons running in the various namespaces
have established adjacencies with the router.

FIG. 18 conceptually illustrate the paths taken by three
packets ingressing into the managed network of FIG. 15.

FIG. 19 conceptually illustrates a process of some embodi-
ments for generating BGP configuration data for a logical
network and then implementing that configuration data by a
BGP service in the controller that generated the data.

FIG. 20 illustrates both a logical network and the physical
implementation of that logical network in a managed net-
work, in which the controller acts as a route server.

FIG. 21 conceptually illustrates data sent by the controller
cluster in order to effectuate a logical router of the logical
network of FIG. 20.

FIG. 22 conceptually illustrates the path taken by several
packets entering the managed network of FIG. 20.

FIG. 23 conceptually illustrates the software architecture
ofacontroller of some embodiments that acts as a route server
for a logical network.

FIG. 24 conceptually illustrates such a managed network
of some embodiments within which a logical network is
implemented, and which uses a separate gateway as a route
server.

US 9,225,597 B2

5

FIG. 25 conceptually illustrates an electronic system with
which some embodiments of the invention are implemented.

DETAILED DESCRIPTION

In the following detailed description of the invention,
numerous details, examples, and embodiments of the inven-
tion are set forth and described. However, it will be clear and
apparent to one skilled in the art that the invention is not
limited to the embodiments set forth and that the invention
may be practiced without some of the specific details and
examples discussed.

Some embodiments provide a network control system that
enables logical networks operating in a network managed by
the network control system to peer with and advertise routing
information to physical routers outside of the managed net-
work. In some embodiments, the logical networks contain
logical routers at least partially implemented in managed
gateways, and these gateways use a routing protocol (e.g.,
Border Gateway Protocol) to peer with the external physical
routers. When multiple managed gateways implement the
logical router (or at least the portion of the logical router that
interfaces with the external network), these multiple gate-
ways may separately advertise the same routes to an external
router in some embodiments, thereby allowing the external
router to distribute traffic for the advertised destinations
across the multiple gateways.

FIG. 1 conceptually illustrates an example of a logical
network architecture 100. The logical network 100 includes
two logical switches 105 and 110 and a logical router 115.
Each of the logical switches 105 and 110 connects several
virtual machines (in this case, two virtual machines (VMs)
are connected by each logical switch, and the logical router
115 connects the two logical switches (i.e., logical layer 2
domains) together. In addition, the logical router connects the
logical network to an external network 120, via three logical
ports. While in this example, the logical router 115 has several
ports connecting to the external network (e.g., as uplink
ports), in some embodiments the logical router may only have
a single port that connects to the external networks.

In some embodiments, the logical network is an abstract
conception of a network generated by an administrator, and
the logical network is implemented in a virtualized, distrib-
uted manner in a managed physical infrastructure (e.g., in a
multi-tenant datacenter). That is, the virtual machines that
connect to the logical switches may reside on various differ-
ent host machines within the infrastructure, and physical
managed forwarding elements (e.g., software virtual
switches) operating on these host machines implement some
or all of the logical forwarding elements (logical switches,
logical routers, etc.).

Alogical router, as in this example, connects a set of logical
switches to which virtual machines logically attach. Each
logical switch represents a particular set of IP addresses (i.e.,
a subnet), and is implemented in the managed network across
a set of managed forwarding elements to which the virtual
machines physically connect (e.g., through virtual inter-
faces). In some embodiments, the logical routers are imple-
mented in a distributed fashion as well by the managed for-
warding elements that connect to the virtual machines.
However, when the logical router also connects to the external
network via one or more ports, these connections to the exter-
nal network are implemented through the use of one or more
gateways. The gateways, in some embodiments, are respon-
sible for both sending data traffic from the managed network

10

15

20

25

30

40

45

50

55

60

65

6

to the external unmanaged physical network and processing
traffic sent from the external network into the managed net-
work.

FIG. 2 conceptually illustrates such a physical implemen-
tation of the logical network 100. This figure illustrates a
managed network 200 that includes three host machines 205-
215 and three gateway host machines 235-245. The VMs of
the logical network 100 reside on the hosts 205-215, imple-
mented on top of virtualization software (e.g., a hypervisor,
virtual machine monitor, etc.) that operates in the host. Addi-
tional virtual machines that connect to other logical networks
may reside on some or all of these hosts, as well as additional
hosts in the managed network that are not shown in this figure.

In addition to the virtual machines, each of the hosts 205-
215 operates a managed forwarding element (MFE) 220-230.
In some embodiments, this MFE is a virtual switch that oper-
ates within the virtualization software of the host (e.g., Open
vSwitch, or another software forwarding element). In the
example illustrated in FIG. 2, the MFEs 220-230 each imple-
ment both of the logical switches 105 and 110, as well as the
logical router 115. This enables first-hop logical processing in
some embodiments, in which all or most of the logical pro-
cessing for a packet is performed at the first MFE that receives
the packet. Thus, a packet sent from VM 1 to VM 4 would be
processed, by the MFE 220, through logical switch 105 to
logical router 115 and then to logical switch 110. The MFE
220 would identify the logical egress port of logical switch
110 for the packet as the port to which VM 4 attaches, and
map this egress port to a tunnel to the MFE 230 at host 210.

In some embodiments, a network controller (or controller
cluster) provisions the MFEs 220-230 by generating flow
entries, or data tuples that the MFE converts into flow entries.
These flow entries specify matching conditions (e.g., physical
ingress port, logical ingress port, destination MAC or IP
addresses, transport layer S-tuples, etc.) and actions to take on
a packet that matches the conditions (e.g., assign packet to a
logical forwarding element, assign a logical egress port, write
data to register, encapsulate in a particular tunnel, etc.). Thus,
in order for the MFE to process a packet through the logical
network, the MFE matches the packet to a first flow entry,
performs the action (e.g., to modify the packet or store logical
context data in a register for the packet), resubmits the packet
in order to match another flow entry, etc.

The gateway host machines 235-245 of some embodi-
ments host [.3 gateways 250-260 for the logical network 100
that implement the connections between the external network
120 and the logical network 100 (specifically, the logical
router 115). When the physical router 275 receives a packet
with a destination address that corresponds to one of the VMs
of' the logical network 100, or a public IP shared by the VMs
on a logical switch, the physical router 275 sends the packet
to one of the gateway hosts 235-245. The gateway hosts
235-245 also include MFEs, and in some embodiments these
MFEs receive packets from the physical router 275 and hand
off the packets to the L3 gateway in their respective host for
processing.

In some embodiments, a user (e.g., an administrator) con-
figures the logical network 100. Upon receiving such a con-
figuration with several logical router ports connecting to the
external network, a network controller (or controller cluster)
selects the set of gateway host machines 235-245 for imple-
menting this connection. Specifically, some embodiments
select a different gateway host machine for each of these
logical router ports. In some embodiments, these gateways
are spread across clusters of gateways in the network, such
that each port is implemented in a different failure domain.
The network controller calculates a routing table for the logi-

US 9,225,597 B2

7

cal router, a portion of which is implemented at the gateway
host machines and a portion of which is implemented by the
MFEs (e.g., the MFEs 220-230 and those on the gateway host
machines 235-245).

The L3 gateways 250-260 implement the portion of the
routing table of the logical router 115 for north-south traffic
(i.e., traffic sent into and out of the managed network). Some
embodiments only handle ingress traffic, with outgoing traf-
fic sent through other means (e.g., by a direct connection
between the MFEs in the host machines 220-230 and the
physical router 275 or other network elements in the external
network 120). In other embodiments, the [.3 gateways handle
both ingress and egress traffic.

As shown, the .3 gateways 250-260 each include a Border
Gateway Protocol (BGP) daemon 280-290. These daemons
280-290 peer with the external physical router 275 and adver-
tise routes to this router for the logical router 115. In some
embodiments, the BGP daemons 280-290 operates in the
same way as a traditional physical router in terms of its
exchange of information with its neighbors. For example,
these BGP daemons may open a BGP session with the physi-
cal router 275, send keep-alive messages as specified by the
protocol, and advertise its routes to the physical router 275 via
BGP packets. In some embodiments, the BGP daemons also
receive BGP packets sent by the physical router 275, and uses
these packets to identify routes. The BGP daemons of some
embodiments either install the routes in their local routing
tables (i.e., within the same namespaces), push the routes up
to the network controller so that the network controller can
calculate new routing tables for all of the L3 gateways imple-
menting the logical router, or a combination thereof. In other
embodiments, however, the BGP daemon only effectively
works in one direction, sending out routes to its neighbors (to
attract ingress traffic) but not installing routes received from
those neighbors. That is, the BGP daemon neither pushes the
received routes up to the network controllers nor installs the
routes in the routing table at the local gateway.

In some embodiments, the peering of the [.3 gateways with
the physical router(s) is a user-specified property of the logi-
cal ports. In some embodiments, when the user (e.g., admin-
istrator) specifies for the logical router to peer with external
routers, the controller generates routing protocol data based
on the logical network configuration. For each port of the
logical router that faces the external network, the controller
identifies (i) the set of external routers with which the gateway
implementing the port will peer (that is, its neighbors) and (ii)
the set of routes that the gateway implementing the port will
advertise. These routes may be simply the IP prefixes repre-
senting the logical switches that connect to the logical router,
or may additionally include other routes input by the user or
dynamically generated by processes that implement the logi-
cal router. In some embodiments, different ports of the logical
router may advertise their routes to different external network
routers. Once the network controller generates this data,
along with the routing table data for the [.3 gateway, the
network controller distributes the data to the gateways (e.g.,
through a hierarchy of network controllers).

In some embodiments, the 1.3 gateways 250-260 are virtu-
alized containers that have the ability to store a routing table,
such as namespaces. In addition, the BGP daemons 280-290,
or other routing protocol applications, operate within these
containers according to the data received from the controllers.
One or more daemons may operate on the gateway host
machine outside of the containers (e.g., in the virtualization
software of the gateway) in order to receive data tuples from
the controller that define both the routing tables and the BGP
configuration for a particular namespace. This daemon or

10

15

20

25

30

35

40

45

50

55

60

65

8

daemons operate to instantiate the namespace, provision the
namespace with the routing table, and start the BGP daemon
in the namespace. In addition, the daemon(s) generate a con-
figuration file for the BGP daemon in some embodiments, and
store the configuration file (e.g., in a file system of the host
machine) for access by the routing protocol application. Upon
installing its configuration file, the BGP daemons begins
communication with its external router neighbors.

In the example shown in FIG. 2, multiple gateways 235-
245 that implement the same logical router 115 (e.g., imple-
menting different ports) advertise the same routes (e.g., to
reach VMs on the logical switches 105 and 110) to the same
external router 275. The external router, in some embodi-
ments, views these multiple .3 gateways as equal-cost next-
hops for packets sent to the advertised addresses. As such, the
external routers in some embodiments spread packets sent to
those destinations across the various gateways that advertise
the routes. The external routers may use any of a variety of
different equal-cost multi-path (ECMP) techniques to deter-
mine to which gateway a packet should be sent.

In the above-described embodiments, the routing protocol
application resides inline. That is, the application operates on
the gateway, which is the location through which packets are
sent. In some embodiments, however, the network
controller(s) act as a route server for the gateways, and the
routing protocol application resides on the controller. In this
case, the routing protocol configuration is not distributed to
the gateways by the controller, but instead used to instantiate
the routing protocol application on the controller. The con-
troller then advertises the routing information to the external
routers (and potentially receives advertised routing informa-
tion from the external routers). This advertised information
informs the external routers as to which gateways to use for
which routes. As in the inline case, the external routers may
use ECMP techniques to distribute packets sent to the logical
network between the several gateways.

The above description introduces the use of BGP by logical
networks of some embodiments, though one of ordinary skill
in the art will recognize that the invention is not limited to
BGP, and that other routing protocols may be used. Several
more detailed embodiments are described below. First, Sec-
tion I describes the provisioning of gateways by network
controllers. Section II then describes architecture of the host
machines that host [.3 gateways in some embodiments. Next,
Section III describes the process of configuring a routing
protocol application on a gateway, and Section IV describes
the operation of the routing protocol application of some
embodiments. Section V then describes the use of a network
controller as a route server in some embodiments. Finally,
Section VI describes an electronic system with which some
embodiments of the invention are implemented.

1. Provisioning Gateways by Network Controllers

As mentioned, in some embodiments a network control
system sets up and configures the logical routers and associ-
ated routing protocol applications in one or more gateways
for a logical network. One or more network controllers in the
network control system receive the network configuration
input by an administrator and convert this information into
data tuples that can be read by the gateway host machines, in
addition to selecting the one or more gateway host machines
to use for the logical routers. The network control system also
distributes the data tuples to these host machines.

FIG. 3 conceptually illustrates such a network control sys-
tem 300 of some embodiments for provisioning managed
forwarding elements, [.3 gateways, and routing protocol
applications in order to implement logical networks and
enable the logical routers of those networks to peer with

US 9,225,597 B2

9

external routers. As shown, the network control system 300
includes an input translation controller 305, a logical control-
ler 310, physical controllers 315 and 320, host machines
325-340, and two gateway host machines 345 and 350. As
shown, the hosts 325-340, as well as the gateway hosts 345
and 350, include managed forwarding elements, which may
implement logical forwarding elements as shown in the above
figures (e.g., through the use of flow entries). The gateway
hosts 345 and 350 also each include [.3 gateways for handling
packets ingressing to and/or egressing from the managed
network. These L3 gateways additionally include BGP func-
tionality (e.g., in the form of a BGP daemon). One of ordinary
skill in the art will recognize that many other different com-
binations of the various controllers and hosts are possible for
the network control system 300.

In some embodiments, each of the controllers in a network
control system is a computer (e.g., having an x86-based pro-
cessor) with the capability to function as an input translation
controller, logical controller, and/or physical controller.
Alternatively, in some embodiments a given controller may
only have the functionality to operate as a particular one of the
types of controller (e.g., only as a physical controller). In
addition, different combinations of controllers may run in the
same physical machine. For instance, the input translation
controller 305 and the logical controller 310 may run in the
same computing device, with which a data center manage-
ment application interacts (or with which an administrator
interacts directly).

The input translation controller 305 of some embodiments
includes an input translation application that translates net-
work configuration information received from a user. While
shown as receiving the information directly from the user in
FIG. 3, in some embodiments a user interacts with a data
center management application, which in turn passes the net-
work configuration information to the input translation con-
troller.

For example, a user may specify a network topology such
as that shown in FIG. 1. For each of the logical switches, the
user specifies the machines that connect to the logical switch
(i.e., to which logical ports of the logical switch the VM are
assigned). The user may also specify which logical switches
attach to any logical routers, one or more logical ports of the
logical router for connection to external networks, and
whether these logical ports peer with external physical rout-
ers. The input translation controller 305 translates the
received network topology into logical control plane data that
describes the network topology as a set of data tuples in some
embodiments. For example, an entry might state that a par-
ticular MAC address A is located at a first logical port X of'a
particular logical switch, that a logical router Q is located at a
second logical portY of the particular logical switch, or that
a logical port G of the logical router Q is an uplink port
interfacing with the external network.

Insome embodiments, each logical network is governed by
a particular logical controller (e.g., logical controller 310).
The logical controller 310 of some embodiments translates
the logical control plane data that defines the logical network
and the logical forwarding elements (e.g., logical routers,
logical switches) that make up the logical network into logical
forwarding plane data, and the logical forwarding plane data
into physical control plane data. The logical forwarding plane
data, in some embodiments, consists of flow entries described
at a logical level. For the MAC address A at logical port X,
logical forwarding plane data might include a flow entry
specifying that if the destination of a packet matches MAC A,
to forward the packet to port X. The port of the logical router
Q will also have a MAC address, and similar flow entries are

10

15

20

25

30

35

40

45

50

55

60

65

10

created for forwarding packets with this MAC address to port
Y of the logical switch. In addition, the logical forwarding
plane data of some embodiments includes a flow entry for
sending packets with an unknown IP address to, e.g., logical
port G.

In some embodiments, the logical controller translates the
logical forwarding plane data into universal physical control
plane data. The universal physical control plane data enables
the network control system of some embodiments to scale
even when the network includes a large number of managed
forwarding elements (e.g., thousands) to implement a logical
forwarding element, and when the network implements a
large number of logical networks. The universal physical
control plane abstracts common characteristics of different
MFEs in order to express physical control plane data without
considering differences in the MFEs and/or location specifics
of the MFEs.

As stated, the logical controller 310 of some embodiments
translates logical control plane data into logical forwarding
plane data (e.g., logical flow entries that include a match over
logical network parameters, such as logical addresses, logical
ingress ports, etc.), then translates the logical forwarding
plane data into universal physical control plane data. In some
embodiments, the logical controller application stack
includes a control application for performing the first trans-
lation and a virtualization application for performing the sec-
ond translation. Both of these applications, in some embodi-
ments, use a rules engine for mapping a first set of tables into
a second set of tables. That is, the different data planes are
represented as tables (e.g., nLog tables), and the controller
applications use a table mapping engine (e.g., an nlog
engine) to translate between the planes (e.g., by applying join
operations on thetables). The input and output tables, in some
embodiments, store sets of data tuples that define the different
planes of data.

Each of the physical controllers 315 and 320 is a master of
one or more managed forwarding elements (e.g., located
within host machines). In this example, each of the two physi-
cal controllers is a master of two managed forwarding ele-
ments located at the VM host machines 325-340. Further-
more, the physical controller 315 is a master of two gateway
hosts 345 and 350, on which both MFEs as well as [.3 gate-
ways for a particular logical network reside. In some embodi-
ments, all of the [.3 gateways for a logical router are managed
by the same physical controller (as in this figure), while in
other embodiments difterent physical controllers manage the
different gateway hosts for a logical network.

In some embodiments, a physical controller receives the
universal physical control plane data for a logical network
and translates this data into customized physical control plane
data for the particular MFEs that the physical controller man-
ages and which require data for the particular logical network.
In other embodiments, the physical controller passes the
appropriate universal physical control plane data to the
MFEs, which have the ability (e.g., in the form of a chassis
controller running on the host machine) to perform this con-
version themselves.

The universal physical control plane to customized physi-
cal control plane translation involves a customization of vari-
ous data in the flow entries. For the example noted above, the
universal physical control plane would involve several flow
entries (i.e., several data tuples). The first entry states thatif a
packet matches the particular logical data path set (e.g., based
on the packet being received at a particular physical ingress
port), and the destination address matches MAC A, then for-
ward the packet to logical port X. This entry will be the same
in the universal and customized physical control planes, in

US 9,225,597 B2

11

some embodiments. Additional entries are generated to
match a physical ingress port (e.g., a virtual interface of the
host machine) to the logical ingress port X (for packets
received from the VM having MAC A), as well as to match a
destination logical port X to the physical egress port of the
physical MFE (e.g., again the virtual interface of the host
machine). However, these physical ingress and egress ports
are specific to the host machine on which the MFE operates.
As such, the universal physical control plane entries include
abstract physical ports while the customized physical control
plane entries include the actual physical interfaces (which, in
many cases are virtual interfaces) that attach to the specific
MFEs.

In some embodiments, as shown, the gateway hosts also
operate managed forwarding elements (e.g., using the same
packet processing/virtual switching software as the VM hosts
325). These MFEs also receive physical control plane data
from the physical controller that enables the MFEs to imple-
ment the logical forwarding elements. In addition, some
embodiments distribute the routing table data and routing
protocol (e.g., BGP) configuration information to the .3 gate-
ways operating in the gateway hosts through the hierarchical
network control system. The logical controller 310 that man-
ages the logical network selects the set of gateway hosts for
the logical router (e.g., using a load balancing algorithm that
spreads the [.3 gateways for various logical routers across a
set of hosts), then generates the data to distribute to these
hosts.

The logical controller identifies the physical controller(s)
that manages each of these selected gateway hosts, and dis-
tributes the routing table and/or routing protocol configura-
tion data to the identified physical controllers. In some
embodiments, both the L3 gateway configuration (e.g., a rout-
ing table, NAT table, etc.) and the BGP configuration are
distributed as a set of data tuples. For instance, the BGP
configuration data tuples of some embodiments specifies IP
addresses of the gateway’s BGP neighbors, and a set of IP
addresses or prefixes to advertise to those neighbors. The
physical controllers then distribute these data tuples to the
gateway hosts. In some embodiments, each of the gateway
hosts for a particular logical router receives the same routing
table and BGP configuration. On the other hand, in some
embodiments, different gateway hosts may have connections
to different external physical routers, and therefore has dif-
ferent sets of BGP neighbors. As described in detail below,
the gateway hosts convert the data tuples into (i) a routing
table for use by a container (e.g., a VM, a namespace) that
operates on the gateway host as the [.3 gateway and (i1) a BGP
configuration file for use by a BGP module (e.g., a daemon or
other application) that operates within the container.

The above describes the hierarchical network control sys-
tem of some embodiments, although the network control
system of other embodiments includes only a single control-
ler (or a controller cluster with one active and one or more
standby controllers). FIG. 4 conceptually illustrates the
propagation of data through the hierarchical network control
system of some embodiments. The left side of this figure
shows the data flow to the managed forwarding elements to
implement the logical forwarding elements (e.g., the logical
switches and logical routers) of the logical network, while the
right side of the figure shows the propagation of BGP data to
the gateway hosts in order to provision a BGP daemon oper-
ating within the [.3 gateway.

On the left side, the input translation controller 305
receives a network configuration through an API, which is
converted into logical control plane data. This network con-
figuration data includes a logical topology such as that shown

10

15

20

25

30

35

40

45

50

55

60

65

12

in FIG. 1. The network configuration specifies attachments of
logical switches to a logical router in some embodiments,
with MAC addresses assigned to each VM and each logical
router port that connects to a logical switch, and each logical
switch having an associated IP subnet.

As shown, the logical control plane data is converted by the
logical controller 310 (specifically, by a control application of
the logical controller) to logical forwarding plane data, and
then subsequently (by a virtualization application of the logi-
cal controller) to universal physical control plane data. In
some embodiments, these conversions generate a flow entry
at the logical forwarding plane (or a data tuple that defines a
flow entry), then add a match over the logical data path set
(e.g., the logical switch or router) at the universal physical
control plane. The universal physical control plane also
includes additional flow entries (or data tuples) for mapping
generic physical ingress ports (i.e., a generic abstraction of a
port not specific to any particular MFE) to logical ingress
ports as well as for mapping logical egress ports to generic
physical egress ports. For instance, for a port of the logical
switch at which a VM resides, the flow entries at the universal
physical control plane would include a forwarding decision to
send a packet to the logical port to which the VM connects
when the destination MAC address of the packet matches that
of the VM, as well as an egress context mapping entry that
maps the logical egress port to a generic physical (i.e., virtual)
interface. For other MFEs, including those at the gateway
hosts, the universal physical control plane data includes a
generic tunneling entry for encapsulating the packet in a
tunnel to the MFE at which the VM is located.

The physical controller 315 (one of the several physical
controllers in the hierarchical network control system 300), as
shown, translates the universal physical control plane data
into customized physical control plane data for the particular
MFEs that it manages at hosts 325, 330, 345, and 350. This
conversion involves substituting specific data (e.g., specific
physical ports or tunnel encapsulation information) for the
generic abstractions in the universal physical control plane
data. For instance, in the example of the above paragraph, the
port integration entries are configured to specify the physical
layer port to which the VM attaches (i.e., an identifier for the
actual virtual interface). Similarly, the tunnel encapsulation
entries for the different MFEs will have different tunnel
encapsulation information.

While this example illustrates the physical controller 315
as performing the universal physical control plane to custom-
ized physical control plane translation, some embodiments
utilize a chassis controller on the host machines for this task.
In such embodiments, the physical controllers do not translate
the physical control plane data, but instead just serve as a
distribution mechanism for delivering this data to the numer-
ous host machines located in the network so that the logical
controller does not have to communicate with every MFE in
the network. In this case (not shown in the figures), the uni-
versal physical control plane to customized physical control
plane conversion is performed by one module or element at
the hosts 325 and 345 (i.e., the chassis controller), while the
MFEs at the hosts 325 and 345 perform the customized physi-
cal control plane to physical forwarding plane data conver-
sion.

Whether the customization of the physical control plane
data is performed by the physical controller or a chassis
controller at the host, the MFE at host 325 (one of several
MFEs managed by the physical controller 315) performs a
translation of the customized physical control plane data into
physical forwarding plane data. The physical forwarding
plane data, in some embodiments, are the flow entries stored

US 9,225,597 B2

13

within the MFE (e.g., within the user space and/or kernel of a
software virtual switch such as Open vSwitch) against which
the MFE actually matches received packets. In addition, the
MFEs at both of the gateway hosts 345 and 350 perform such
a translation in order to forward packets between (i) the .3
gateways, (ii) other network entities (e.g., VMs) within the
managed network via tunnels, and (iii) the external network.

The right side of FIG. 4 illustrates data propagated to the
gateway hosts (e.g., host 345) to implement a BGP configu-
ration for a .3 gateway, rather than for the MFEs. As shown,
the logical controller 310 converts a BGP configuration to a
set of data tuples that define that configuration. In some
embodiments, the BGP configuration is generated by either
the logical controller or the input translation controller based
on the network configuration input by the user (e.g., admin-
istrator). When a user designs the logical network, some
embodiments allow the user to specify for the logical router
whether the connections to the external network will use a
routing protocol (or BGP specifically) to peer with external
routers. In some embodiments, the user specifies this by
choosing a type of port for these connections (e.g., an uplink
port) for which BGP (or a different routing protocol) is auto-
matically activated. In addition, each logical switch in the
logical network will have an associated IP subnet (either
assigned by the user or automatically assigned by the logical
controller). For each port, or for the logical router as a whole,
either the user may specify the external physical routers that
will send packets to the port or the logical controller generates
this data based on the gateways selected for the port.

Based on this information (i.e., the set of physical routers to
which each port connects, the IP addresses/subnets of the
VMs/logical switches), the logical controller 310 generates
the set of data tuples for the BGP configuration. This may be
performed by the table mapping engine in some embodi-
ments, that also converts the logical control plane data into
physical control plane data. In addition to the BGP data
tuples, the logical controller generates data tuples for the
logical router aspect of the L3 gateway (e.g., the routing
table). In order to define containers on a particular gateway
host, some embodiments define each container as a separate
data tuple that specifies the existence of the container and the
processes running on the container, including BGP. Within
this data tuple, BGP may be enabled. Furthermore, this data
tuple defines various BGP options, such as the router 1D,
whether or not to advertise graceful restart capability, and a
list of prefixes (e.g., in classless inter-domain routing (CIDR)
form) to advertise to all peers. In addition, the logical con-
troller creates a data tuple for each BGP neighbor (i.e., peer
external router) of a particular .3 gateway. These neighbor
data tuples specify, in some embodiments, the address of the
BGP neighbor, a keep-alive timer that indicates the time
between keep-alive packets, and the interface through which
the BGP application in the gateway communicates with the
neighbor, among other information.

Once the logical controller 310 identifies the gateway hosts
for the logical router and creates the data tuples, the logical
controller then identifies the physical controller or controllers
that manage the gateway hosts. As mentioned, like the VM
hosts 325-340, each of the gateway hosts has an assigned
master physical controller. In the example of FIG. 3, both of
the gateway hosts are managed by the physical controller 315,
so the other physical controller 320 does not receive the BGP
data tuples.

In order to supply the logical router configuration data to
the gateway hosts, the logical controller 310 of some embodi-
ments pushes the data to the physical controller 315. In other
embodiments, the physical controllers request the configura-

20

40

45

55

14

tion data (e.g., in response to a signal that the configuration
data is available) from the logical controller.

The physical controller 315 passes the data to the gateway
hosts, including host 345, much as they pass the physical
control plane data. In some embodiments, the BGP data
tuples are sent to a database running on the host that is part of
the software associated with the MFE, and is used to config-
ure certain aspects of the MFE (e.g., its port information and
other non-flow entry configuration data).

In some embodiments, a process on the gateway host 345
starts up the container for the .3 gateway and translates the
BGP data tuples stored in the database into a BGP configu-
ration file for an application operating in the I3 gateway. The
application can load the configuration in order to determine
its operating configuration.

The above description describes the conversion, by the
network control system, of the network configuration into a
set of physical forwarding plane flow entries that the physical
controller passes to the host (e.g., via a protocol such as
OpenFlow). In other embodiments, however, the data for
defining flow entries is passed in other forms, such as more
abstract data tuples, and the MFEs or processes running on
the hosts with the MFEs convert these data tuples into flow
entries for use in processing data traffic.

FIG. 5 conceptually illustrates a process 500 of some
embodiments for generating and distributing data in order to
implement a set of connections between a logical router in a
managed network and an external network. In some embodi-
ments, the process 500 is performed by a network controller
(e.g., by alogical controller in a network controller hierarchy
such as that shown in FIG. 3) upon receiving a network
configuration that includes a logical router with router peer-
ing enabled.

As shown, the process 500 begins by receiving (at 505)
instructions to create a logical router with one or more ports
connecting to an external network. These instructions may be
the result of a network administrator designing a logical net-
work (e.g., through a cloud management application that
passes the logical network configuration through controller
APIs) that includes the logical router. In some embodiments,
the instructions to create the logical router specifically indi-
cate that the connections to the external network should be
implemented using BGP, or another protocol, for router peer-
ing and route advertisement. In other embodiments, this capa-
bility is automatically enabled for all logical routers with at
least one connection to the external network.

Next, the process selects (at 510) gateway host machines
for each of the ports that connect to the logical network. Some
embodiments assign each port to a different gateway host,
while other embodiments allow multiple ports (and therefore
multiple namespaces hosting routing tables and BGP ser-
vices)to be created on a single gateway host. In some embodi-
ments, the gateway hosts are arranged in terms of clusters, or
failure domains. These clusters, in some embodiments, may
be sets of host machines that are physically located together in
the managed network, and therefore more likely to all fail
together (e.g., due to a top of rack switch failing, power
issues, etc.). Different embodiments may assign gateways to
host machines differently respective to the clusters. For
instance, some embodiments assign only one gateway per
cluster for a particular logical router, while other embodi-
ments assign all gateways for a logical router to the same
cluster. Yet other embodiments may assign gateways to sev-
eral different clusters, but allow two or more gateways within
a single cluster.

Furthermore, in some embodiments, the gateway host
machines may be assigned to different groups based on the

US 9,225,597 B2

15

functions for which those gateway hosts are used. For
example, within a physical managed network, some embodi-
ments use a first group of gateway hosts for providing logical
services (e.g., DHCP, metadata proxy), a second group of
gateway hosts for [.3 gateways that utilize BGP for route
advertisement and for which each logical router port is
assigned a single gateway, and a third group of gateway hosts
for L3 gateways that do not utilize route advertisement and for
which each logical router port is assigned to multiple gate-
ways. In this case of FIG. 5, the controller selects gateway
hosts from among the second group for each logical router
port. Each group may span several clusters of gateway hosts,
thereby allowing for the process 500 to select (at 510) gate-
way host machines within the second group from several
clusters (i.e., failure domains).

Some embodiments allow the administrator to specify the
cluster to which the controller assigns each logical port of the
logical router, and the controller handles selection of the
actual gateway host within that cluster. Thus, the administra-
tor might specify to have two logical ports assigned to gate-
ways in a first cluster, four in a second cluster, and two more
in a third cluster. The controller then assigns each logical port
to a specific gateway host in its selected cluster. For this
assignment, some embodiments use a load balancing tech-
nique, such as calculating a hash function of a property of the
logical router or port (e.g., a UUID assigned by the controller)
modulo the number of gateway hosts in the cluster. This
assigns the logical router ports to gateway hosts within the
cluster effectively at random (even though the algorithm itself
is deterministic), and therefore load balances the [.3 gateways
across the gateway hosts over the long run.

Some other embodiments may use other techniques to load
balance the .3 gateways across the hosts in a cluster. For
instance, rather than using the hash algorithm to choose
between all gateway hosts in a cluster, some embodiments
choose between only those gateways with the fewest number
of logical routers currently operating, and modulo the result
of the hash function by this smaller number of gateways.
Other embodiments analyze the number of logical routers on
each gateway and the operational load of the gateways (e.g.,
based on number of packets processed over a particular time-
frame) in order to determine to which gateway host a particu-
lar logical router should be assigned.

FIG. 6 conceptually illustrates five separate clusters 605-
625 of gateway hosts, and the logical router ports (referred to
as uplinks) implemented on those gateway hosts. Specifically,
the first cluster 605 includes four gateways 606-609, the
second cluster 610 includes four gateways 611-614, the third
cluster 615 includes three gateways 616-618, the fourth clus-
ter 620 includes three gateways 621-623, and the fifth cluster
625 includes five gateways 626-630. This figure illustrates
only the gateway hosts for each cluster that are capable of
hosting [.3 gateways for ports that use BGP for route adver-
tisement. In some embodiments, the clusters (i.e., failure
domains) might include additional gateway hosts assigned to
different functionalities, such as hosting logical services
(e.g., DHCP, DHCP relay, etc.).

In this example, each of six different logical routers (LR1-
LR6) have from three to five logical ports for connecting with
the external network, spread throughout these clusters differ-
ently. For example, the logical router LR1 has uplink ports
implemented on gateways in the hosts 606, 611, 613, and 627,
located in four different clusters. The logical router LR3 has
uplink ports implemented on gateways in the hosts 608, 609,
621, and 623, with two gateways in each of two of the differ-
ent clusters. The logical router LR4 has all three of its uplink
ports implemented on gateways in the same cluster 625, on

15

25

30

35

40

45

50

55

60

65

16
hosts 627, 628, and 629. Thus different configurations for
implementing the uplink ports of a logical router are possible,
depending on the administrator decisions and the needs of the
logical networks.

No explicit load balancing is used in the illustrated
example, with the gateways assigned to hosts using, e.g.,
explicit assignment by an administrator or a hash function
mod the number of gateways. therefore both the second clus-
ter 610 and the fifth cluster 625 include gateway hosts 613 and
630, respectively, with no gateways implemented (even
though both of these clusters also include hosts with multiple
gateways). In addition, not all of the clusters have the same
number of gateway hosts. This may be due to the clusters
simply having different numbers of physical machines, some
of the clusters having different numbers of gateway hosts
assigned to different tasks, or some ofthe clusters having host
machines offline due to connection or other problems. In
some embodiments, when an application running on a gate-
way identifies a problem with the gateway host, the applica-
tion notifies a network controller (e.g., the physical controller
that manages the gateway host) of the issue so that the gate-
way host can be taken out of use until the issue is resolved.

Different embodiments handle failover of the .3 gateways
implementing the uplink ports differently. In some embodi-
ments, when a gateway host with a [.3 gateway implementing
anuplink port fails, the network does not immediately replace
the L3 gateway on a new host. Instead, the network controller
allows the incoming (and, in some embodiments, outgoing)
packets to be distributed across the other uplink ports whose
gateways are still active. On the other hand, some embodi-
ments replace the 1.3 gateway with a new implementation for
the uplink port on a different gateway host (e.g., in the same
cluster as the failed host).

Both the FIG. 6 and the above description illustrates using
a single gateway host to implement each uplink port. How-
ever, to guard against host failure, some embodiments select
both an active and a standby gateway host for each of the
uplink ports that connects to the external network. That is, one
of the implementations for the logical router port in a first
gateway host is active, with MFEs instructed to send packets
to it and with its BGP daemon advertising routes. The other
implementation of the logical router port, in a second gate-
way, is configured in the same way but the MFEs do not send
traffic to it and its BGP daemon does not advertise routes. If
the first (active) gateway host fails, then the MFEs will begin
sending traffic to the second (standby) host, and the network
controller will let the second host know to activate its BGP
daemon. The failover for high-availability gateways is
described in further detail in U.S. application Ser. No. 14/166,
446, entitled “High Availability 1.3 Gateways for Logical
Networks” and filed Jan. 28, 2014, now published as U.S.
Patent Publication 2015/0063360. U.S. application Ser. No.
14/166,446, now published as U.S. Patent Publication 2015/
0063360, is incorporated herein by reference.

Returning to FIG. 5, after selecting the gateway hosts for
each of the logical router ports connecting to the external
network, the process 500 generates (at 515) flow entries (or
data tuples defining flow entries) for MFEs on host machines
that send packets through the logical router (i.e., machines
hosting VMs attached to logical switches that attach to the
logical router). These flow entries, among other functional-
ities, both (1) implement the distributed logical router and (ii)
send packets, forwarded by the logical router to one of the
logical ports connecting to the external network, to the
selected gateway host machines through tunnels. In addition,
the flow entries generated for the VM hosts will also include

US 9,225,597 B2

17

numerous other entries, such as those implementing the logi-
cal forwarding for the logical switches, ingress and egress
ACLs, etc.

To implement the logical router in the MFEs, some
embodiments generate logical forwarding entries that match
packets based on destination IP address or address prefix (as
well as over the logical pipeline for the router itself), and
identify a logical egress port of the logical router based on the
1P address. To generate these flow entries, the network con-
troller of some embodiments first generates the routing table
for the logical router. In some embodiments, these routes
include a default route for sending packets to one of the ports
that connects to the external network, as well as routes for
sending packets to each attached logical switch based on the
IP subnets associated with the logical switches. The routing
tables are then embedded into flow entry data tuples (e.g.,
including a match over the logical router pipeline). In addi-
tion, the flow entries for the logical router perform MAC
address modification on the packets (to modify the source
MAC address to be that of the logical egress port of the logical
router, and the destination MAC address to be the address
matching the destination IP address). This may include flow
entries for either performing ARP or sending packets to an
ARP daemon that operates on the hosts as well. Beyond the
actual routing of the packet, the network controller generates
flow entries for .3 ingress and egress ACL, in some embodi-
ments, according to any policies defined for the logical router.

Different embodiments use different types of flow entries
for choosing to which of the logical ports connecting to the
external network a packet should be forwarded. Some
embodiments send all outgoing packets through a single one
of'the logical ports, but when the amount of outgoing traffic is
large (e.g., for a webserver, a streaming video application,
etc.), the gateway on which this port is implemented can
become a bottleneck. Other embodiments use an equal-cost
multi-path (ECMP)-like technique to choose a logical egress
port for packets exiting the logical network. For instance, a
flow entry of some embodiments lists the ports as a bundle
and then provides a technique to identify to which of the ports
to send the packet for a given set of packet properties (e.g., a
hash of packet properties modulo the number of ports).

The process 500 also generates (at 520) flow entries for the
MFEs on the gateway host machines. These flow entries,
among other functions, forward packets to the container (e.g.,
namespace) implementing a logical router port on the gate-
way host, forward packets to the NIC that connects to an
external router, and forward packets to the other MFEs at the
VM hosts through tunnels. For instance, outbound packets
(i.e., received from a VM host) are sent by the MFE to the
namespace for additional routing by the L3 gateway routing
tables in some embodiments. After this routing, the
namespace returns the packet to the MFE (as a new packet)
with an external router identified as its destination and the
MEFE sends this new packet to the outbound NIC. For incom-
ing packets, the MFE first sends the packet to the namespace
for routing by the 1.3 gateway routing tables, then receives the
packet back and performs first-hop routing to identify a logi-
cal egress port of the logical router (typically the port to which
one of the logical switches attaches), identify a logical egress
port of the logical switch (typically the port to which a VM
attaches), and send the packet out a tunnel to the appropriate
MFE.

In addition to the flow entries (or data tuples defining the
flow entries), the process generates (at 525) data tuples for the
routing table for handling ingressing (and, in some embodi-
ments, egressing) packets at each of the [.3 gateways imple-
menting a logical port. In some embodiments, these data

10

15

20

25

30

35

40

45

50

55

60

65

18

tuples are generated by a table mapping engine that also
generates the flow entries. However, other embodiments uti-
lize a separate route processor to generate the routing entries.
As indicated above, much of the routing table is implemented
as flow entries sent to the MFEs. However, the routing table of
the [.3 gateway handles packets being routed to and received
from the external network. Accordingly, the routing table
(and additional aspects of the IP network stack which may be
implemented by the 1.3 gateway, such as a NAT table) is
responsible for performing any necessary ARP (e.g., into the
external networks), decrementing the packet TTL (i.e., as
another hop for the packet), and for outgoing packets select-
ing an external router to which the packet will be sent.

These flow entries and/or data tuples generated at opera-
tions 515-525 enable the 1.3 gateways and MFEs to handle the
processing of data packets. In addition, the process 500 gen-
erates data for the routing protocol application (e.g., a BGP
daemon) operating at each of the .3 gateways. Thus, the
process identifies (at 530) the addresses (and other informa-
tion) of the external network router(s) with which to peer for
each logical port (i.e., each L3 gateway) that connects to the
external network. In some embodiments, the administrator
inputs this data for each logical port, and handles ensuring
that the external routers are correctly connected to the gate-
way hosts (or, e.g., a top of rack switch to which the gateway
hosts connect). In other embodiments, the network controller
automatically determines the set of external routers to which
each of the gateway hosts is connected based on its stored
network state information, and uses these as the external
network routers with which to peer the L3 gateway.

Based on these identified external routers, as well as the
calculated routes for the logical network, the process gener-
ates (at 535) data tuples to define the routing protocol for the
L3 gateways on the selected host machines. As indicated
above, in order to define the L3 gateway container on a
particular gateway host, some embodiments define each con-
tainer as a separate data tuple that specifies the existence of
the container and the processes running on the container,
including BGP or another routing protocol application. This
data tuple defines various BGP options, such as the router ID,
whether or not to advertise graceful restart capability, and a
list of prefixes to advertise to all peers. This list of IP
addresses and/or prefixes, in some embodiments, is based on
the user configuration of the logical network (e.g., the public
IPs configured for the logical switches of the logical net-
work). In addition, the controller generates a data tuple for
each peer external router (e.g., BGP neighbor) of each L3
gateway. These neighbor data tuples specify, in some embodi-
ments, the address of the external router, a keep-alive timer
that indicates the time between keep-alive packets, and the
interface through which the BGP application in the gateway
communicates with the neighbor, among other information.

With the data generated, the process 500 distributes (at
540) the generated data tuples and/or flow entries to the
various host machines. In some embodiments, the two types
of data (flow entries and routing table/routing protocol data
tuples) are distributed via different protocols. Some embodi-
ments distribute the flow entries to both the VM hosts and the
gateway hosts via a first protocol such as OpenFlow, while
distributing the routing protocol (e.g., BGP) information and
the routing table to the gateway hosts via a second protocol
such as OVSDB. The OVSDB protocol used in some embodi-
ments also carries configuration information for the MFEs
(for both the VM hosts and the gateway hosts).

The above FIG. 5 conceptually illustrates the process 500
as a single linear flow performed by the controller. However,
one of ordinary skill in the art will recognize that the order in

US 9,225,597 B2

19

which the controller calculates the various flow entries and/or
data tuples need not follow that shown in the figure. For
instance, the controller might generate the flow entries for the
gateway hosts before those for the MFEs, etc. Furthermore,
some embodiments do not wait until all of the indicated data
is calculated in order to distribute the data, but might distrib-
ute the data incrementally. For instance, some embodiments
distribute the forwarding data separate from the routing pro-
tocol data, or incrementally distribute the forwarding data to
a specific host once all the data for that host has been gener-
ated.

II. Gateway Host Architecture

The above section describes in detail the generation of
logical router and routing protocol data by a controller and the
distribution of that data to the gateway host machines on
which the containers (e.g., namespaces) operating as .3 gate-
ways reside. In some embodiments, the gateway host
machines include various modules (e.g., running as user
space daemons or kernel modules) that are responsible for
creating the containers, building routing tables in the contain-
ers, and processing packets to and from the namespaces,
based on the data tuples distributed by the network control
system.

FIG. 7 conceptually illustrates a software architecture of
some embodiments for a gateway host machine 700. The host
machine 700 is a host designated for hosting [.3 gateway
implementations, which may operate a routing protocol
application, within namespaces. As shown, the host 700
includes virtualization software 705 and two namespaces 710
and 715. In some embodiments, the host includes a base
Linux operating system on which the namespaces 710 and
715 run as containers. In some embodiments, the gateway
host machine 700 is a computer with a standard x86-based
processor.

The virtualization software 705 includes a forwarding ele-
ment daemon 725, a database daemon 730, a namespace
daemon 735, a high availability daemon 720, and a forward-
ing element kernel module 740. In some embodiments, the
forwarding element daemon 725, the database daemon 730,
the namespace daemon 735, and the high availability daemon
720 operate in the user space of virtualization software 705,
while the forwarding element kernel module 740 operates in
the kernel of the virtualization software 705. In some embodi-
ments, the forwarding element used on the host is Open
vSwitch (OVS), and these modules are the OVS daemon,
OVSDB daemon, and OVS kernel module, in addition to the
namespace daemon and the high availability daemon. In
some embodiments, the functionalities of the namespace dae-
mon 735 and the high availability daemon 720 are combined
into a single user space application. This figure illustrates
both control path connections (shown as dashed lines) for
provisioning the managed forwarding element and the
namespaces, as well as data path connections (shown as solid
lines) for sending data packets (including BGP packets). One
of ordinary skill in the art will recognize that, in addition to
the modules shown, which relate to the virtual switch and
hosted namespaces, the virtualization software of some
embodiments includes additional modules for performing,
e.g., virtualization of the hardware resources (e.g., proces-
sors, memory, etc.) of the host machine 700.

The forwarding element daemon 725 is an application that
communicates with a physical network controller 795 in
some embodiments in order to receive instructions for pro-
cessing and forwarding packets sent to and from the
namespaces 710 and 715 (e.g., packets entering the managed
network from an external network or leaving the managed
network to an external network). Specifically, as described in

30

40

45

50

60

20

the previous section, the forwarding element daemon 725
receives physical control plane flow entries from the physical
controller 795. The forwarding element daemon, in some
embodiments, communicates with the network controller
through the OpenFlow protocol, though other embodiments
may use different communication protocols for transferring
the forwarding data to the host machine. Additionally, in
some embodiments the forwarding element daemon 725
retrieves configuration information from the database dae-
mon 730 after the physical controller 795 transmits the con-
figuration information to the database daemon.

The forwarding element daemon 725 of some embodi-
ments includes a flow protocol module 750 and a flow pro-
cessor 755. The flow protocol module 750 handles the com-
munication with the network controller 795 in order to
receive physical control plane information (e.g., flow entries)
for the managed forwarding element. As mentioned, in some
embodiments this communication uses the OpenFlow proto-
col. When the flow protocol module 750 receives this physical
control plane information, it translates the received informa-
tion into data understandable by the flow processor 755 (e.g.,
physical forwarding plane information useable for processing
packets).

The flow processor 755 manages the rules for processing
and forwarding (i.e., switching, routing) packets in some
embodiments. For instance, the flow processor 755 stores
rules (e.g., in a machine readable storage medium, such as a
disk drive) received from the flow protocol module 750. In
some embodiments, the rules are stored as a set of flow tables
(forwarding tables) that each includes a set of flow entries.
These flow entries, in some embodiments, include a match
(i.e., a set of packet characteristics) and one or more actions
(i.e., a set of actions to take on packets that match the set of
characteristics). In some embodiments, the flow processor
725 handles packets for which the managed bridge 760 (de-
scribed below) does not have a matching rule. In such cases,
the flow processor 755 matches the packets against its stored
rules. When a packet matches a rule, the flow processor 725
sends the matched rule and the packet to the managed bridge
760 for the managed bridge to process. This way, when the
managed bridge 760 subsequently receives a similar packet
that matches the generated rule, the packet will be matched
against the generated exact match rule in the managed bridge
and the flow processor 755 will not have to process the packet.

In some embodiments, the database daemon 730 is an
application that also communicates with the physical control-
ler 795 in order to configure the managed forwarding element
(e.g., the forwarding element daemon 725 and/or the forward-
ing element kernel module 740). For instance, the database
daemon 730 receives configuration information from the
physical controller and stores the configuration information
in a set of database tables 745. This configuration information
may include tunnel information for creating tunnels to other
managed forwarding elements, port information, etc. In some
embodiments, the database daemon 730 communicates with
the network controller 795 through a database communica-
tion protocol (e.g., OVSDB). In some cases, the database
daemon 730 may receive requests for configuration informa-
tion from the forwarding element daemon 725. The database
daemon 730, in these cases, retrieves the requested configu-
ration information (e.g., from its set of database tables 745)
and sends the configuration information to the forwarding
element daemon 725.

In addition to the forwarding element configuration (tunnel
and port information, etc.), the database daemon 730 of some
embodiments additionally receives BGP configuration infor-
mation that defines the configuration for the BGP daemons

US 9,225,597 B2

21

operating in the namespaces 710 and 715. This information
includes information about the routes the BGP daemon adver-
tises to its peers, as well as information identifying those
peers. The database daemon 730 may receive this BGP con-
figuration information along with the forwarding element
configuration information, or in separate transactions with
the controller 795.

As shown, the database daemon 730 includes a configura-
tion retriever 765 and a set of database tables 745 (which may
be stored, e.g., on a hard drive, volatile memory, or other
storage of the host 700). The configuration retriever 765 is
responsible for communications with the physical controller
795. In some embodiments, the configuration retriever
receives the configuration information for the managed for-
warding element from the controller. In addition, the configu-
ration retriever in some embodiments receives the data tuples
for configuring the namespaces 710 and 715, and any routing
tables, NAT tables, BGP daemon, or other services provided
by the namespaces. The configuration retriever 765 also con-
verts these data tuples into database table records to store in
the database tables 745 in some embodiments.

Specifically, the database tables 745 of some embodiments
include a container table, with each record in the database
defining a different namespace (or other container) on the
host machine. Thus, for the host 700, the container table
would include a row for each of the two namespaces 710 and
715. In addition, for each namespace, the database tables
store information defining the routing table (e.g., a default
route, any additional routes defined for the connected logical
switches, and any user-defined static routes). If the router
performs NAT, then the database also stores the NAT rules
(source NAT and/or destination NAT) for the logical router).
Furthermore, for each namespace, the database stores a list of
the logical router ports, with IP address, MAC address, net-
mask, etc. for each port.

For the namespaces 710 and 715, with active BGP dae-
mons, the database table record indicates that BGP is enabled.
Furthermore, in some embodiments, these records contain an
additional column specitying the BGP properties of the [.3
gateway as a peering router. These properties may include a
local autonomous system number (which, in different
embodiments, identifies either the logical network to which
the L3 gateway belongs or the managed network as a whole),
a router identifier (e.g., an IP address), whether or not to
advertise graceful restart (used for failover purposes—in
some embodiments, namespaces that are the only L3 gateway
implementing a port do not advertise graceful restart), and a
set of addresses/prefixes advertised by the BGP daemon.

Furthermore, some embodiments define a database table
record (e.g., in a different database table) for each external
physical router that the .3 gateway peers with via the BGP
daemon (i.e., each BGP neighbor). These records, in some
embodiments, specify some or all of the IP address of the
neighbor router, the autonomous system number for the
router, a keep-alive timer (i.e., the duration between keep-
alive messages sent to the neighbor in order to keep a BGP
session alive), an optional password used for MDS5 authenti-
cation, a hold-down timer duration (i.e., the duration after
which, if no keep-alive messages are received, the BGP dae-
mon assumes that the neighbor has gone down), and an inter-
face through which communication with the BGP neighbor is
sent.

The forwarding element kernel module 740 processes and
forwards network data (e.g., packets) between the
namespaces running on the host 700, network hosts external
to the host 700, and forwarding elements operating on other
hosts in the managed network (e.g., for network data packets

10

15

20

25

30

35

40

45

50

55

60

65

22

received through the NIC(s) 770 or from the namespaces 710
and 715). In some embodiments, the forwarding element
kernel module 740 implements the forwarding tables of the
physical control plane for one or more logical networks (spe-
cifically, the logical networks to which the namespaces 710
and 715 belong). To facilitate the processing of network data,
the forwarding element kernel module 740 communicates
with forwarding element daemon 725 (e.g., to receive flow
entries from the flow processor 755).

FIG. 7 illustrates that the forwarding element kernel mod-
ule 740 includes a managed bridge 760. In addition, in some
embodiments, the virtual switch kernel module may include
additional bridges, such as physical interface (PIF) bridges.
Some embodiments include a PIF bridge for each of the NICs
770 in the host machine’s hardware. In this case, in some
embodiments a PIF bridge is located between the managed
bridge 760 and each of the NICs 770.

The managed bridge 760 of some embodiments performs
the actual processing and forwarding of the packets between
the namespaces 710 and 715 and the VMs and other hosts
(including external hosts) that send traffic to and receive
traffic from the namespaces. Packets are received at the man-
aged bridge 760, e.g., from the MFEs at the VM hosts through
tunnel ports, or from the external routers via their connection
to the NICS, such that packets arriving over different tunnels
or external router connections are received at different inter-
faces of the bridge 760. For packets received from other
MFEs (e.g., at the VM hosts), the managed bridge 760 sends
the packets to the appropriate namespace through its
interface(s) with the namespace based on a destination logical
port appended to the packet (or other information, such as a
destination MAC or IP address).

For packets received from an external router, the managed
bridge 760 of some embodiments sends the packets to the
appropriate namespace based on, e.g., a destination MAC
and/or IP address of the packet. When an external router
routes a packet to the namespace, the router performs MAC
address replacement using previously-discovered ARP infor-
mation. In some embodiments, the external router has a MAC
address of the namespace associated with various IP
addresses behind that namespace, and therefore uses the
namespace MAC address as the destination address for pack-
ets directed to that gateway. In some embodiments, the man-
aged bridge uses this information to direct these packets to the
appropriate namespace, as packets entering the logical net-
work do not yet have logical context information appended.

Similarly, the managed bridge receives packets from the
namespaces 710 and 715, and processes and forwards these
packets based on the interface through which the packets are
received and the source and/or destination addresses of the
packets. In some embodiments, to process the packets, the
managed bridge 760 stores a subset of the rules stored in the
flow processor 755 (and/or rules derived from rules stored in
the flow processor 755) that are in current or recent use for
processing the packets. The managed bridge 760, in this
figure, includes two interfaces to each of the namespaces 710
and 715. In some embodiments, the managed bridge includes
a separate interface for each logical port of the logical router.
Thus, the managed bridge may send a packet to the
namespace through one of its interfaces, and after routing by
the namespace routing table, the managed bridge receives the
packet back through a different interface. On the other hand,
because the namespace only implements one of the logical
router ports, some embodiments only have a single interface
between the namespace and the managed bridge.

Although FIG. 7 illustrates one managed bridge, the for-
warding element kernel module 740 may include multiple

US 9,225,597 B2

23

managed bridges. For instance, in some embodiments, the
forwarding element kernel module 740 includes a separate
bridge for each logical network that is implemented within
the host machine 700, or for each namespace residing in the
host (which will often be the same as each logical network).
As such, in this example, the forwarding element kernel mod-
ule 740 would include two managed bridges, with separate
interfaces to the namespaces 710.

Each of the namespaces 710 and 715 implements a difter-
ent [.3 gateway (i.e., implements a different port of a logical
router). In some embodiments, all of the namespaces on a
particular gateway host machine are of the same type (i.e.,
implementing a single logical router port using a router peer-
ing protocol such as BGP). On the other hand, some embodi-
ments also allow namespaces that are one of several to equiva-
lently implement an entire routing table for a logical router or
act as gateways for a logical router that has a single logical
port attachment to the external network. Furthermore, some
embodiments also allow namespaces to provide logical ser-
vices other than routing, such as DHCP, DHCP relay, meta-
data proxy, etc.

As indicated in this figure, different namespaces imple-
menting different L3 gateways (e.g., different logical ports)
for different logical networks (or, in some cases, for the same
logical router or different logical routers within the same
logical network) may reside on the same host 700 in some
embodiments. In this case, both of the namespaces 710 and
715 run a BGP daemon and a routing table.

In some embodiments, the namespace may provide mul-
tiple services. In this case, the first namespace 710 includes a
routing table 775, a BGP daemon 780, and other services 782.
These other services running on the namespace 710 might
provide ARP functionality, a network address translation
(NAT) table, or other features associated with a router. The
second namespace 715 also includes a routing table 790 and
a BGP daemon 792, along with other services 794. Some
embodiments use the same set of services for all of the L3
gateways that implement ports and use router peering proto-
cols, while other embodiments allow the user to configure the
network stack or other services provided. In addition, some
embodiments restrict the use of stateful services, such as
NAT, for implementations in which multiple gateways are
active for a logical router at the same time. That is, the net-
work control system prevents the [.3 gateways from utilizing
those service that require the various gateways for a logical
router to share state information.

The namespace daemon 735 of some embodiments man-
ages the namespaces 710 and 715 residing on the host 700 and
the services running in those namespaces (e.g., logical router
and 1.3 gateway service). As shown, the namespace daemon
735 includes a database monitor 785 and a BGP configuration
generator 799. In addition, some embodiments include con-
figuration generators or similar modules for other services
(e.g., a NAT table generator, a routing table generator, con-
figuration generators for DHCP and other services that may
be provided in the namespaces, etc.).

The database monitor 785 listens on the database tables
745 for changes to specific tables that affect the namespaces
implementing logical routers. These changes may include the
creation of'anew namespace, removal of anamespace, adding
or removing a BGP neighbor, modifying the BGP configura-
tion or routing table within a namespace, attaching new logi-
cal switches to a logical router, etc. When the database moni-
tor 785 detects a change that affects the namespaces, it either
causes the namespace daemon to create a new namespace on
the host for a new logical router, instantiate a new process in

10

15

20

25

30

35

40

45

50

55

60

65

24

an existing namespace (e.g., for a newly enabled service), or
generate/modify the routing table or other configuration data
for a namespace.

When the database monitor 785 detects new BGP configu-
ration data (either a new namespace with a BGP configura-
tion, a modification to an existing BGP configuration, modi-
fications to the set of neighbors for a particular BGP daemon,
etc.), the database monitor 785 provides this data to the BGP
configuration generator 799 (or instructs the BGP configura-
tion generator 799 to retrieve the new data from the database
tables 745). The BGP configuration generator uses the data
tuples stored in the database tables 745 to build a configura-
tion file for the BGP daemon in the format required by the
daemon. In some embodiments, the namespace daemon 785
stores the generated configuration in the host file system 783
In some embodiments, the BGP daemon 780 and 792 is a
standard application available for Linux or a different oper-
ating system.

The high availability daemon 720 monitors the health of
the gateway host 700 and/or the namespaces 710 and 715
operating on the host 700. This daemon is responsible for
reporting to the controller 795 when the gateway host 700 is
no longer healthy and should be taken out of use, thereby
allowing the controller to assign the namespaces operating on
the host to new gateway hosts, modify flow entries used for
tunnel encapsulation at the VM hosts that send packets to the
L3 gateways implemented on the gateway host 700, etc.

The high availability daemon 720 includes a monitor 793
and a health status modifier 797 in some embodiments. The
monitor 793 of some embodiments monitors various aspects
of the gateway host machine 700 to determine whether the
machine should remain in use or be taken out of use for
hosting [.3 gateways (as well as other services for logical
networks). The monitor 793 may monitor the underlying
hardware resources (e.g., processors, memory, etc.) to ensure
that these resources are functioning well enough to provide
the logical routing services at necessary speeds. In addition,
the monitor 793 ensures that connections to the other host
machines (e.g., the VM hosts that send traffic to the gateway
host) are functioning properly. Some embodiments monitor
the connections by monitoring the physical NICs, and moni-
toring whether packets are received from these hosts. In addi-
tion, the monitor 793 of some embodiments monitors the
software operating on the host. For instance, the monitor
checks on the other modules of the virtualization software
705 and the namespaces 710 and 715 to ensure that they have
not crashed or otherwise failed. In addition, in some embodi-
ments the high availability daemon 720 uses Bidirectional
Forwarding Detection (BFD) to monitor upstream routers
(e.g., routers external to the managed network) directly.

When the monitor 793 determines that the gateway host
700 should be taken out of use for any reason, the high
availability daemon 720 notifies the physical controller 795
that manages the gateway host machine 700. To notify the
controller, in some embodiments the health status modifier
797 modifies the database tables 745 with information that
the database daemon 765 (e.g., via the configuration retriever
765) propagates up to the controller 795. In some embodi-
ments, the health status modifier 797 modifies a table that
includes a health variable for the gateway host 700 to indicate
that the gateway should be inactive. In some embodiments,
the health status modifier 797 modifies a row in the tables 745
created for each namespace to indicate that the namespace
should be considered inactive. When a single namespace
crashes, the health status modifier 797 only modifies the data
for the crashed namespace.

US 9,225,597 B2

25

The configuration retriever 765, in some embodiments,
detects that the database tables 745 have been modified and
sends updated data tuples to the physical controller 795.
When the controller 795 receives such an indication, the
controller identifies the logical controllers with affected logi-
cal routers, enabling these controllers to (i) assign the logical
ports for implementation on new gateway hosts, and (ii) gen-
erate new flow entries for the MFE hosts that send packets to
the L3 gateways.

III. Configuration of Routing Protocol Application

As indicated in the previous section, in some embodiments
an application (e.g., a user space daemon) or set of applica-
tions operating on the gateway host machine is responsible
for receiving a L3 gateway configuration and installing that
configuration in a namespace or other container on the gate-
way host. The L3 gateway configuration may include a rout-
ing table, a routing protocol configuration, as well as other
data. The application, among other functions, retrieves infor-
mation from a set of database tables stored on the host and
uses that information to set up the [.3 gateway, with its various
functionalities, in a namespace on the host. This setup
includes the generation of a configuration file that specifies
various BGP parameters and BGP neighbors for the BGP
daemon, in some embodiments.

FIG. 8 conceptually illustrates a process 800 of some
embodiments for setting up or modifying a L.3 gateway on a
gateway host machine. In some embodiments, the process
800 is performed by a user space daemon in the virtualization
software running on the gateway host, such as the namespace
daemon 785. As shown, the process 800 begins by receiving
(at 805) a modification to database tables that define L3
gateways implementing a logical router port with BGP to run
on the host machine. In some embodiments, the application
responsible for creating the [.3 gateway on the host and gen-
erating the BGP configuration file listens on a set of database
tables that are populated by controller data. When a new row
is added to the table defining the namespaces on the host, oran
existing row is modified, the application detects this change
and retrieves the data. When the change relates to either the
creation of a namespace with a BGP daemon or the modifi-
cation of the BGP configuration for an existing namespace,
the BGP configuration generator is called in order to create or
modify the configuration file for the new/affected BGP dae-
mon.

Upon receiving the database tables, the process 800 deter-
mines (at 810) whether the container for the affected L3
gateway is already operating on the host machine. That is, the
process determines whether the modification to the database
tables is for adding a new gateway or modifying an existing
gateway. In some embodiments, the database tables on the
gateway host first receive a data tuple simply defining a new
container, and then subsequently receive the configuration
information, in which case the routing table and/or BGP
configuration data will be treated as a modification to an
existing namespace.

When the container is not yet operating on the host
machine, the process creates (at 815) a container for a new L3
gateway on the host machine. In some embodiments, a user
space application operating in the virtualization software of
the gateway host machine (e.g., a namespace daemon) is
responsible for creating and removing containers for [.3 gate-
ways on the host. As mentioned, in some embodiments this
container is a virtualized container such as a namespace or a
virtual machine that operates on top of the base operating
system. Some embodiments use a Linux namespace, as this
uses less operational resources than a typical virtual machine,
and is adequate for the operations performed by the L3 gate-

10

15

20

25

30

35

40

45

50

55

60

65

26

way (e.g., IP stack including routing, BGP daemon). In some
embodiments, each gateway host machine runs numerous
(e.g., dozens) of namespaces operating [.3 gateways for
numerous different logical routers of numerous different logi-
cal networks.

Next, the process 800 determines (at 820) whether a rout-
ing table has yet been defined for the affected L3 gateway
according to the configuration in the database tables. For
example, if the database tables only define a new L3 gateway
without providing any information about the configuration of
the namespace for the L3 gateway, then the namespace dae-
mon will create a new namespace on the host, but not config-
ure the namespace at all. Furthermore, if the database tables
only include modifications to other aspects of the namespace,
such as the BGP configuration, then the namespace daemon
will not modify the routing table of the particular L3 gateway.
However, in some embodiments, the namespace daemon
ensures that any routes advertised by the BGP daemon are
also in the routing table of the 1.3 gateway. As such, if new
prefixes are added to the list of those to advertise in the BGP
configuration, then the namespace daemon adds these to the
routing table if not already present.

However, when the routing table currently installed in the
container does not match the routing table definition in the
database tables (either because there is no routing table yet
defined or because the routing table definition has been modi-
fied), the process generates or modifies (at 825) the routing
table for the L3 gateway, and installs (at 830) the routing table
in the container. In some embodiments, this is actually one
operation, as the namespace daemon directly modifies the IP
stack in the namespace. In other embodiments, the
namespace daemon generates a routing table or IP stack and
then installs this in the container as a separate action.

Next, the process 800 determines (at 835) whether the BGP
daemon has been started in the container for the L3 gateway.
For example, if the container was previously created without
a configuration, or if the container was just created during the
process 800 (i.e., if the database tables defined a new con-
tainer with a BGP configuration), then the daemon would not
have yet been started in the container. On the other hand, if the
modification to the database tables was just an update to the
routing table or the BGP configuration (e.g., adding routes for
a new logical switch, adding or removing a BGP neighbor,
etc.), then the BGP daemon would already be in operation in
the container for the L3 gateway.

When the BGP daemon has not yet been started, the pro-
cess starts (at 840) a BGP daemon in the container. In some
embodiments, the namespace daemon sends an instruction to
the namespace implementing the 1.3 gateway to start up a
BGP daemon. In order for the namespace to actually run an
instance of the BGP daemon, in some embodiments the soft-
ware is already installed on the namespace by default. In other
embodiments, either the namespace retrieves the daemon
(e.g., from a storage on the gateway host) or the namespace
daemon retrieves the daemon and installs it on the namespace.

With the BGP daemon started, the process determines (at
845) whether the configuration of the BGP daemon matches
that defined in the received database tables for the [.3 gate-
way. If the BGP daemon was just started (at operation 840),
then the daemon will not yet have a configuration, and there-
fore clearly will not match that defined in the database tables.
In addition, the database table modifications might add or
remove routes to advertise, add or remove BGP neighbors, or
modify the data for a BGP neighbor. However, if the database
table modifications only affect the routing table, then no BGP
configuration modifications will be required.

US 9,225,597 B2

27

When the operating configuration does not match that
defined by the database tables, the process generates (at 850)
a configuration file from the database tables and stores the file
in the file system of the host machine. In some embodiments,
within a specific directory of the file system, each of the
gateways operating on the machine is assigned a sub-direc-
tory for, e.g., the BGP configuration file, as well as storage for
other data (e.g., a DHCP configuration file, etc.). In order to
generate the configuration file, in some embodiments the
namespace daemon uses the data tuples from the database
table records and transforms them into a specific format read-
able by the BGP daemon. For instance, in some embodiments
the configuration file is a textfile. In other embodiments, the
namespace daemon first generates an intermediate configu-
ration file (e.g., a text file), then converts this into a binary
snapshot readable by the BGP daemon, and stores both of
these files in the directory for the BGP daemon instance in the
namespace. The configuration file, in some embodiments,
defines (i) the autonomous system and identification infor-
mation for the BGP daemon as a router, (ii) a set of routes for
the BGP daemon to advertise, and (iii) information about the
external router peers of the BGP daemon.

Once the configuration file has been generated, the process
800 notifies (at 805) the BGP daemon to read the configura-
tion file in order for its configuration to match that defined in
the database tables. In some embodiments, the notification
takes place via a TCP connection within the gateway host
between the namespace daemon and the BGP daemon. The
BGP daemon, in some embodiments, reads the binary con-
figuration file, calculates changes from its current operating
configuration, and applies these changes.

IV. BGP Operation in Gateway

Once the BGP daemon has been instantiated, and its con-
figuration file loaded, the 1.3 gateway can participate in route
exchange as a peer of the external routers. FIG. 9 conceptu-
ally illustrates a process 900 of some embodiments per-
formed by the routing protocol application (e.g., BGP dae-
mon) of some embodiments in order to advertise routes to
external routers for an 1.3 gateway. The process 900 repre-
sents a process performed by the BGP daemon upon initial
startup. One of ordinary skill in the art will recognize that in
many cases the operations will not be performed in the linear
fashion shown in this figure. For example, communication
with different external routers may require different lengths
of setup time, and the BGP daemon treats each peer-to-peer
connection as a separate process in some embodiments.

As shown, the process 900 begins by receiving (at 905) a
BGP configuration. As described in the previous section, in
some embodiments a user space application in the virtualiza-
tion software of the host (e.g., the namespace daemon) gen-
erates a BGP configuration file, stores the configuration file in
adirectory of the host file system for the namespace, and then
notifies the BGP daemon of the configuration file. At this
point, the BGP daemon can retrieve the BGP configuration
from the directory.

Next, the process 900 installs (at 910) the configuration. In
some embodiments, the BGP daemon reads the retrieved
binary file, determines the differences between its current
operating configuration and the configuration specified in the
binary file, and applies these changes to the existing configu-
ration such that the new operating configuration matches that
in the configuration file. If this is the initial setup for the BGP
daemon, then the operating configuration will have no data.
However, if the change is limited to adding or removing a
route to advertise, or adding, removing, or modifying infor-
mation about a neighbor physical router, then the BGP dae-

25

30

40

45

28

mon only modifies its configuration to effect the changes,
rather than reloading the entire configuration.

With the configuration installed, the process identifies (at
915) the BGP neighbors (i.e., peer physical routers) with
which to set up a connection in order to advertise routes. This
may be a single physical router (e.g., as shown in FIG. 15
below) or several physical routers to which the gateway (us-
ing the BGP daemon) advertises the same routes (e.g., as in
FIG. 10 below). In some embodiments, the physical connec-
tions between the gateway host machines on which the L3
gateways operate and the external physical routers are set up
manually and identified to the network controller by the
administrator when the network is configured, whereas in
other embodiments the network controller identifies the rout-
ers to which each gateway is connected automatically without
this information being input by a user.

In some embodiments, the BGP daemon identifies, for
each physical router, the IP address of the router, the autono-
mous system number to which the router belongs, the keep-
alive timer for a BGP session with the router, a hold-down
time that specifies a duration after which the BGP daemon
should assume the router has gone down if no keep-alive
messages have been received, and optionally a password for
authentication. Different physical routers with which a single
BGP daemon establishes connections may use different BGP
settings (e.g., different keep-alive or hold-down timers) and
belong to different autonomous systems.

Next, the process opens (at 920), or attempts to open, a
BGP session with each of the identified BGP neighbors. In
some embodiments, the BGP daemon operates as the stan-
dard BGP state machine for each connection. That is, the
daemon essentially instantiates a separate state machine for
each BGP connection with a different physical router. The
daemon, for each connection, attempts to transition to the
Established state in order to be able to exchange route updates
with the physical router. That is, the BGP daemon attempts to
initiate a TCP connection with the peer, send an Open mes-
sage and receive an Open message in return, and send and
receive keep-alive messages in order to transition from the
Connect state to the OpenSent state to the OpenConfirm state
and finally to the Established state. When a connection with a
peer router is in the Established state, the BGP daemon and
the peer router can exchange route information.

However, for various reasons, the BGP daemon might be
unable to open a session (also referred to as establishing
adjacency) with one or more of its identified neighbors. For
instance, if the autonomous system number provided in the
configuration file for a particular peer router does not match
the actual autonomous system number configured on the peer
router, then adjacency will not be established. The process
900 assumes that adjacency is established for each BGP
neighbor—if the daemon fails to open a session with a par-
ticular router, then it continues attempting in some embodi-
ments (e.g., attempting to establish a TCP session, attempting
to send and receive Open messages, etc.).

The process also identifies (at 925) the routes to advertise
to its peers with which a BGP session has been established,
based on the configuration file. In some embodiments, the
BGP daemon advertises the same addresses and prefixes to
each of the routers with which it peers. These may be single IP
addresses (e.g., 10.1.1.1) or CIDR prefixes (e.g., 10.1.1/24)
that represent ranges of IP addresses. In some embodiments,
the BGP daemon advertises all routes in CIDR slash-notation
(e.g., using /32 to denote a single 1P address).

Using the identified prefixes and addresses, the process
generates (at 930) packets for each identified neighbor with
which an adjacency has been established. In some embodi-

US 9,225,597 B2

29

ments, these packets are standard BGP Update packets that
identify the known reachable prefixes and the list of autono-
mous systems through which a packet will have to pass to
reach each prefix. For routes to logical switches, the BGP
packetadvertises the subnet (e.g., 10.1.1/24) and only a single
autonomous system number (that to which the L3 gateway
belongs), as packets will not have to be sent to any other
autonomous systems once reaching the 1.3 gateway in order
to reach the VM hosts.

Each time a packet is generated, the process sends (at 935)
the generated packet out of the namespace to the local MFE in
order for the MFE to send the packet out over the external
network to the destination physical router neighbor. If the
BGP daemon establishes adjacencies with three different
physical routers, then the daemon will send the same BGP
Update packet to three different destinations via the MFE.
Furthermore, several different namespaces might be running
BGP daemon instances on the same host for different logical
routers, in which case the same router might receive several
different Update packets advertising completely different
routes.

FIGS. 10-14 conceptually illustrate an example of the use
of BGP in a [.3 gateway to advertise routes to a set of three
external routers for a logical network. FIG. 10 illustrates both
the logical network 1000 and the physical implementation of
that logical network in a managed network 1025. As shown in
the top half of the figure, the logical network 1000 is config-
ured similarly to the logical network 100 of FIG. 1, with a
single logical router 1015 connecting two logical switches
1005 and 1010. The first logical switch 1005 includes IP
addresses in the subnet 10.0.0/24 (sometimes written as
10.0.0.0/24), and the second logical switch 1510 includes IP
addresses in the subnet 10.0.1/24 (sometimes written as
10.0.1.0/24). In addition, the logical router 1015 includes
three ports that connect to an external network 1020, for
which route advertisement (e.g., using BGP) is activated.

The bottom portion of FIG. 10 illustrates the physical
implementation of the logical network 1000. Within the man-
aged network, a set of VM host machines 1030 hosts the VMs
attached to the logical switches 1005 and 1010. These VM
hosts 1030 may each host a single VM from the logical
network, and some might host multiple VMs, either from the
same logical switch or different logical switches. The for-
warding tables of the MFEs on the VM hosts each implement
both of the logical switches 1005 and 1010 as well as the
logical router 1015. In addition, in some embodiments, these
VM hosts 1030 may host VM from other logical networks,
and the forwarding tables of the MFEs would then implement
these other logical networks as well. Furthermore, the man-
aged network 1025 of some embodiments includes additional
VM hosts that host VMs for other logical networks but upon
which none of the VMs for logical network 1000 reside.

In addition, the managed network 1025 includes three gate-
way hosts 1035-1045. Each of these gateway hosts 1035-
1045 hosts a namespace that implements one of the three
logical router ports that faces the external network 1020.
Specifically, the first gateway host 1035 hosts a first
namespace 1050 implementing a first logical router port, the
second gateway host 1040 hosts a second namespace 1055
implementing a second logical router port, and the third gate-
way host 1045 hosts a third namespace 1060 implementing a
third logical router port. Each of these namespaces 1050-
1060 operates a BGP daemon or other routing protocol appli-
cation for exchanging routing information with the attached
external network routers. A MFE also operates on each of the
gateway hosts 1035-1045. In some embodiments, the MFEs
each implement the logical switches 1005 and 1010 as well as

10

15

20

25

30

35

40

45

50

55

60

65

30

the logical router 1015. While outgoing packets from the
VMs will have already been processed through most of the
logical network, these MFEs act as first-hop MFEs for incom-
ing packets, and process these incoming packets through the
logical network in some embodiments. As the gateway hosts
may implement other namespaces for other logical networks,
these MFEs may implement other logical networks as well.

In this example, three external network routers 1065-1075
connect to the namespaces 1050-1060 through the MFEs on
the gateway hosts. The first router 1065 connects to only the
namespace 1050 on host 1035, the second router 1070 con-
nects to all three of the namespaces 1050-1060, and the third
router 1075 connects to the namespace 1060 on host 1045.
These routers may provide connections through to the Inter-
net, other networks, etc.

FIG. 11 conceptually illustrates the provisioning of the
BGP daemons in the three namespaces 1050-1060 on the
gateway hosts 1035-1045 by a controller cluster 1100 that
operates to control the managed network 1025. The controller
cluster 1100, in different embodiments, may be a single con-
troller, a pair or group of controllers operating in a master-
standby(s) configuration, or a hierarchy of controllers such as
those shown in FIG. 3. As shown, the controller cluster 1100,
based on configuration information entered to define the logi-
cal network 1000, transmits BGP configuration data to the
three gateway hosts 1035-1045 in order to provision the BGP
daemons operating in the namespaces on those hosts. Among
other information, the BGP configuration data includes the
prefixes to advertise (which are the same for each of the
gateways) and the list of BGP neighbors (peer routers).

In this example, the controller cluster sends data 1105 to
the first gateway host 1035 indicating the prefixes 10.0.0/24
and 10.0.1/24 and two BGP neighbors 15.1.1.1 and 16.1.1.1
(the IP addresses for the two routers with which this gateway
interfaces). The controller cluster sends data 1110 to the
second gateway host 1040 indicating the same two prefixes
and only one BGP neighbor 16.1.1.1. Lastly, the controller
cluster sends data 1115 to the third gateway host 1045 indi-
cating the same two prefixes and two BGP neighbors 16.1.1.1
and 17.1.1.1. In some embodiments, the controller cluster
transmits this data in the same format as other non-flow entry
configuration data for the gateway (e.g., as data tuples trans-
mitted using the OVSDB protocol). The BGP configuration
data sent from the controller may also include other data such
as the autonomous system number (which will be the same
across the gateways), router identification info for the gate-
ways, and additional information about the peer routers (e.g.,
the autonomous system numbers of the peers).

After receiving the configuration data from the controller
cluster 1100, applications (e.g., daemons running in the vir-
tualization software) on each of the gateway hosts 1035-1045
configure the BGP daemons operating on their respective
namespaces (e.g., by generating a configuration file for the
BGP daemon). The BGP daemons then begin operations, and
attempt to set up connections with their identified peer exter-
nal routers. For example, the BGP daemon in the namespace
1050 establishes two separate TCP connections with the rout-
ers 1065 and 1070, then further establishes BGP sessions with
these routers by sending BGP Open and keep-alive messages.
If such messages are also received from these routers, then the
BGP daemon can send out Update packets to the peer routers.

FIG. 12 conceptually illustrates the BGP Update packets
sent by BGP daemons in the namespaces 1050-1060 accord-
ing to some embodiments. These packets, in some embodi-
ments, identify themselves as BGP Update packets (i.e., inthe
BGP header), identify the source router, and identify reach-
ability information for various prefixes. This reachability

US 9,225,597 B2

31

information, in some embodiments, identifies (i) a prefix in
CIDR format and (ii) an ordered set of autonomous systems
through which packets will pass in order to reach an IP
address in the subnet defined by the prefix if sent to the source
of the Update packet. For instance, in a typical physical
network, a router might identify a prefix 192.10.10.0/24 that
is reachable through autonomous systems 15, 8, 6 (with the
sending router located in autonomous system 15).

In most cases of L3 gateways for a logical network, all of
the routes to VMs attached to the logical switches will only
have a single autonomous system in their reachability infor-
mation, that to which the gateway belongs. In general, either
each logical network is a single autonomous system, or the
managed network as a whole is a single autonomous system.
In some cases, however, the advertised routes could have
more than one autonomous system (e.g., if the managed net-
work is divided into multiple autonomous systems through
which packets pass in order to reach the logical switches).

As shown, the namespace 1050 sends two Update packets
1205 and 1210 to the routers 1065 and 1070 respectively. The
namespace 1050 sends each of these packets through its local
MFE, which includes bridges to the NIC(s) of the gateway
host 1035. Each of these packets is the same (except for the
destination router information), indicating the two prefixes
10.0.0/24 and 10.0.1/24 and the sending namespace informa-
tion. The namespace 1055 sends a single packet 1215 to the
router 1070, indicating the same prefix reachability data but
with different self-identification information. Finally, the
third namespace 1060 sends two packets 1220 and 1225 to
routers 1070 and 1075, also identifying the same two prefixes
with equivalent reachability information, with its own self-
identification information.

As a result of receiving these Update packets, the external
routers 1065-1075 update their own routing tables. In some
embodiments, the routers add the learned routes to their Rout-
ing Information Base (RIB), and then recompute routes to the
identified destinations to use in the Forwarding Information
Base (FIB). In some embodiments, the RIB includes all
routes that the router has learned (via connection, manual
input of routes, or dynamic routing protocols such as BGP),
while the FIB includes the routes that the router will actually
use to forward packets.

The routers 1065 and 1075 only have a single way to reach
the prefixes 10.0.0/24 and 10.0.1/24—through [.3 gateways
on the hosts 1035 and 1045 respectively. However, the router
1070 receives route advertisement from the namespaces on
all three gateway hosts 1035-1045, each indicating them-
selves as possible next hops to reach these prefixes. In gen-
eral, when confronted with multiple routes in the RIB to reach
a particular destination IP address or range of addresses, one
of the physical routers determines which of the routes is
optimal (e.g., based on the number of autonomous systems
traversed, or other data) and selects the most optimal route to
use in the FIB. In this case, though, the three possible routes
presented to the router 1070 for 10.0.0/24 are equivalent. In
some embodiments, the router 1070 simply chooses one of
these routes for its FIB. If the router 1070 is capable of
equal-cost multi-path (ECMP) forwarding, however, then the
router adds all three of the routes (i.e., to the namespaces
1050-1060) to its FIB as equal-cost options. This enables the
spreading of traffic across the three gateways, preventing any
of them from becoming a single bottleneck for incoming
traffic.

FIGS. 13 and 14 conceptually illustrate the path taken by
traffic ingressing into the managed network 1025. First, FIG.
13 illustrates the path taken by a packet 1300 sent from an
external source to a VM in the managed network with a

10

15

20

25

30

35

40

45

50

55

60

65

32
destination IP address of 10.0.1.1. In this figure, the path
taken by the packet 1300 is shown as the thick dashed line.
The packet arrives at the external router 1065, which consults
its forwarding information base. Based on the Update packet
1205 received by the router 1065, its FIB indicates that pack-
ets with destination IP addresses in the range 10.0.1/24
should be sent to the namespace 1050. Accordingly, the exter-
nal router 1065 forwards the packet to the gateway host 1035.

The packet arrives at the MFE on the gateway host 1035,
which forwards the packet to the namespace 1050 which
serves as a gateway for the particular logical network. In some
embodiments, the external router 1065 would have previ-
ously sent an ARP request to the gateway host 1050 request-
ing a MAC address for 10.0.1.1, and the namespace 1050
would have responded with its MAC address. As such, the
packet 1300 is addressed to the MAC address of the
namespace 1050, which enables the MFE to forward the
packet to this destination.

The namespace 1050 receives the packet, processes it
through its IP network stack (including its routing table), and
returns the packet to the MFE through a different interface
with the MFE. In some embodiments, the processing pipeline
in the namespace may include some or all of network address
translation, firewall processing, and routing. Some embodi-
ments, however, do not allow stateful services such as net-
work address translation to be performed on the gateways for
distributed logical routers with multiple gateways, due to the
difficulty of state sharing. The routing performed by the
namespace, in some embodiments, maps the destination IP
address to a destination MAC address of the logical router
port to which the gateway attaches, in some embodiments. In
other embodiments, the routing maps the destination IP
address to the destination MAC address of the VM or other
entity to which the packet is being sent. When the MFE
receives the packet through a different interface, this enables
the MFE to treat the packet as entering the logical router, at
which point the MFE can perform logical processing to iden-
tify the logical egress port of a logical switch for the packet,
and send the packet to the appropriate one of the VM hosts
1030.

FIG. 14 illustrates two packets 1405 and 1410 sent from the
external network to VMs with IP addresses 10.0.1.1 and
10.0.1.3, respectively, through router 1070. In this case, both
of these packets 1405 are forwarded by the same entry in the
FIB of the router 1070, but to different gateways in the man-
aged network 1025. When the external router 1070 receives
the packet 1405, the FIB entry indicates for the router to use
an ECMP technique to choose one of the three equal cost
destinations 1050-1060. The router 1070, in some embodi-
ments, hashes a set of the packet properties in order to deter-
mine to which of the destinations to send the packet. For
instance, some embodiments use the source and destination
IP addresses, while other embodiments use source and/or
destination MAC addresses, the transport connection 5-tuple
(source IP address, destination IP address, transport protocol,
source transport port number, and destination transport port
number), or other combinations of packet properties. In order
to determine how to correlate a hash result to a particular one
of the equal-cost destinations, some embodiments simply
calculate the hash modulo the number of listed destinations.
Other embodiments use algorithms such as consistent hash-
ing or highest random weight, that modify the destination for
less of the traffic when a gateway is added or removed from
the list of equal-cost destinations than would a simple modulo
N algorithm.

Irrespective of the algorithm used (some embodiments
may not even use a hash function, but instead use other load

US 9,225,597 B2

33

balancing techniques), the advertisement of the same routes
by several active [.3 gateways for a logical router to the same
external physical router allows for that physical router to use
its ECMP techniques to spread traffic among these several
gateways. Thus, in this case, the router 1070 sends the first
packet 1405 to the namespace 1055 and the second packet
1410 to the namespace 1060, even though these packets are
governed by the same forwarding entry in the router.

The previous example shown in FIGS. 10-14 illustrates an
example of a single logical network being implemented in a
managed network 1025. The example of FIGS. 15-18 con-
ceptually illustrates two logical networks implemented in a
set of gateways. In this case, the top half of FIG. 15 illustrates
the architecture of a first logical network 1500 and a second
logical network 1525. These logical networks have similar
architectures, with the first logical network 1500 including a
logical router 1515 that connects two logical switches 1505
and 1510 to each other and to an external network 1520. The
first logical switch 1505 includes IP addresses in the range
10.0.0/24 and the second logical switch 1510 includes IP
addresses in the range 10.0.1/24. The logical router 1515
includes four ports that connect to the external network 1520.
The second logical network 1525 includes a logical router
1540 that connects two logical switches 1530 and 1535 to
each other and to the external network 1520. The first logical
switch 1530 includes IP addresses in the range 11.0.0/24 and
the second logical switch 1535 includes IP addresses in the
range 11.0.1/24. The logical router 1540 includes three ports
that connect to the external network 1520. The first and sec-
ond logical networks 1500 and 1525 belong to different ten-
ants, in this case.

The bottom portion of FIG. 15 illustrates the physical
implementation of these networks in a managed network
1550, which is similar to the physical implementation of the
logical network 1000 shown in FIG. 10. For simplicity, the
VM hosts 1545 are collectively represented as a single box in
this diagram. While the figure indicates a single tunnel
between each MFE in a gateway host and the VM hosts 1545,
one of ordinary skill will recognize that in some embodiments
each of the gateway hosts has numerous separate tunnels to
the separate machines hosting VMs of the logical networks.

The portion of the managed network 1550 that implements
these two logical networks 1500 and 1525 includes four gate-
way hosts 1555-1570. On three of these gateway hosts 1555,
1560, and 1570, namespaces implementing logical ports for
both the logical router 1515 and the logical router 1540 oper-
ate. That is, the gateway host 1555 hosts both a namespace
1557 implementing a first connection to the external network
for the logical router 1515 and a namespace 1559 implement-
ing a first connection to the external network for the logical
router 1540. The gateway host 1560 hosts both a namespace
1562 implementing a second connection to the external net-
work for the logical router 1515 and a namespace 1564 imple-
menting a second connection to the external network for the
logical router 1540. The gateway host 1570 hosts both a
namespace 1572 implementing a third connection to the
external network for the logical router 1515 and a namespace
1574 implementing a third connection to the external network
for the logical router 1540. Finally, the gateway host 1565
only hosts a single namespace 1567 (at least when consider-
ing the implementation of these two logical networks—the
gateway host may have namespaces for other logical net-
works not shown) implementing a fourth connection to the
external network for the logical router 1515. Thus, different
logical routers may have different numbers of ports facing
external networks, as determined by administrator configu-

10

15

20

25

30

35

40

45

50

55

60

65

34

ration in some embodiments. In addition, each of the gateway
hosts 1555-1570 connects to only a single external physical
router 1575.

FIG. 16 illustrates the provisioning of the BGP daemons in
the seven namespaces 1557-1574 by a controller cluster
1600, similar to the provisioning shown in FIG. 11. In this
case, however, the controller cluster generates BGP configu-
ration data for namespaces implementing connections for
both of the logical routers 1515 and 1540. In some embodi-
ments that use a hierarchical network of controllers such as
that shown in FIG. 3, the controller cluster 1600 includes two
different logical controllers that generate the BGP configura-
tion for the two different logical routers. These two different
logical controllers would then both send the generated con-
figuration data to the same set of physical controllers for
distribution to the gateway hosts. A physical controller that
manages the gateway host 1555 would receive data from both
of the logical controllers to distribute to the gateway host
1555.

Even if the same controller generates the data for both BGP
configurations, in some embodiments the controller distrib-
utes this data in separate transactions. Thus, the gateway host
1555 receives data defining the namespace 1557 and its BGP
configuration separate from the data defining the namespace
1559 and its BGP configuration. As shown, these configura-
tions may specify the same neighbor router, but different
prefixes to advertise. In some embodiments, the BGP neigh-
bors are stored as global information on the gateway host, for
use by all of the BGP daemons running in the various
namespaces on the host. That is, each external router to which
a gateway hosthas a connection will be a peer for all instances
of BGP operating on the gateway host. In other embodiments,
the peering is determined on a per-namespace (per-L.3 gate-
way) level, and some BGP daemons on a particular host will
peer with a router while others do not.

FIG. 17 conceptually illustrates the BGP Update packets
sent by the various BGP daemons to the external router 1575,
once the daemons running in the various namespaces have
established adjacencies with the router. These packets are
similar to those described above by reference to FIG. 12. As
a result, the router 1575 will have four equal-cost options for
packets sent to IP addresses in the ranges 10.0.0/24 and
10.0.1/24, and three equal-cost options for packets sent to IP
addresses in the ranges 11.0.0/24 and 11.0.1/24.

FIG. 18 conceptually illustrate the paths taken by three
packets ingressing into the managed network 1550. A first
packet 1805 and a second packet 1810 both have a destination
IP address of 10.0.1.1. However, while having the same des-
tination, these packets may have different additional proper-
ties (e.g., source IP address, source and destination transport
port numbers, transport protocols, etc.). As such, using its
ECMP algorithm, the router 1575 sends the packets to differ-
ent namespaces (the path of the packets is indicated by dif-
ferent types of dashed/dotted lines). The router 1575 sends
the first packet 1805 to the namespace 1557 in the gateway
host 1555, while sending the second packet 1810 to the
namespace 1567 in the gateway host 1565. Thus, even pack-
ets sent to the same IP address may be routed differently into
the network. However, some embodiments require that the
external router use an algorithm that routes packets from the
same transport connection to the same one of the gateways.
Using a calculation based on either the source/destination IP
addresses, or the connection 5-tuple serves this purpose.

In addition to the packet 1805 sent to the gateway host
1555, the external router 1575 also sends a packet 1815 with
a destination IP address of 11.0.1.1 to this gateway host. This
third packet 1815 is sent by the MFE at the gateway host 1555

US 9,225,597 B2

35

to the other namespace 1559, which routes the packet back to
the MFE for logical first-hop processing. The MFE, in some
embodiments, differentiates between the packets by destina-
tion MAC address, as described above.

This section refers to several packets of different types. The
term “packet” is used here as well as throughout this appli-
cation to refer to a collection of bits in a particular format sent
across a network. One of ordinary skill in the art will recog-
nize that the term packet may be used herein to refer to various
formatted collections of bits that may be sent across a net-
work, such as Ethernet frames, TCP segments, UDP data-
grams, [P packets, etc.

V. Controller as Route Server

The above sections describe a network control system in
which the network controller generates the BGP configura-
tion for a logical router implementation, then sends that con-
figuration to a gateway that performs both the ingress and
egress routing for the network as well as the route advertise-
ment to one or more routers in the external network. In some
embodiments, however, the controller or controller cluster
has a direct connection to the external router, and acts as a
route server. That is, in addition to generating configuration
data in order for the managed network to implement a logical
network (e.g., BGP configuration data, routing table for L3
gateways, flow entries for the MFEs, etc.), the controller
advertises routes to one or more routers in the external net-
works, thereby preventing this traffic from taking up band-
width in the data path of the gateway MFEs.

The controller of some embodiments sends BGP updates to
the external routers that, rather than identifying the source of
the packet as the next hop for advertised prefixes, instead
identify one of the namespaces implementing a [.3 gateway as
the next hop. In addition, in some embodiments, the control-
ler receives BGP packets from the routers, which it can use to
supplement the routing table for one or more logical routers.

FIG. 19 conceptually illustrates a process 1900 of some
embodiments for generating BGP configuration data for a
logical network and then implementing that configuration
databy a BGP service in the controller that generated the data.
In some embodiments, portions of the process 1900 are per-
formed by a table mapping engine and/or route generation
engine within a controller, while other portions of the process
are performed by a BGP application within the controller. The
controller generates the BGP configuration, but then provides
it to a module running internally, rather than distributing the
configuration to a gateway host that runs a BGP daemon.

As shown, the process 1900 begins by receiving (at 1905)
instructions to create a logical router with one or more ports
connecting to an external network. These instructions may be
the result of a network administrator designing a logical net-
work (e.g., through a cloud management application that
passes the logical network configuration through controller
APIs) that includes the logical router. In some embodiments,
the instructions to create the logical router specifically indi-
cate that the connections to the external network should be
implemented using BGP, or another protocol, for router peer-
ing and route advertisement. In other embodiments, this capa-
bility is automatically enabled for all logical routers with at
least one connection to the external network.

Next, the process selects (at 1910) gateway host machines
for each of the ports that connect to the logical network. Some
embodiments assign each port to a different gateway host,
while other embodiments allow multiple ports (and therefore
multiple namespaces hosting routing tables) to be created on
a single gateway host. In some embodiments, the gateway
hosts are arranged in terms of clusters, or failure domains.
These clusters, in some embodiments, may be sets of host

20

40

45

36

machines that are physically located together in the managed
network, and therefore more likely to all fail together (e.g.,
due to a top of rack switch failing, power issues, etc.). Dif-
ferent embodiments may assign gateways to host machines
differently respective to the clusters. For instance, some
embodiments assign only one gateway per cluster for a par-
ticular logical router, while other embodiments assign all
gateways for a logical router to the same cluster. Yet other
embodiments may assign gateways to several different clus-
ters, but allow two or more gateways within a single cluster.

Furthermore, in some embodiments, the gateway host
machines may be assigned to different groups based on the
functions for which those gateway hosts are used. For
example, within a physical managed network, some embodi-
ments use a first group of gateway hosts for providing logical
services (e.g., DHCP, metadata proxy) and a second group of
gateway hosts for .3 gateways. Each group may span several
clusters of gateway hosts, thereby allowing for the process to
select gateway host machines within the second group from
several clusters (i.e., failure domains).

Some embodiments allow the administrator to specify the
cluster to which the controller assigns each logical port of the
logical router, and the controller handles selection of the
actual gateway host within that cluster. Thus, the administra-
tor might specify to have two logical ports assigned to gate-
ways in a first cluster, four in a second cluster, and two more
in a third cluster. The controller then assigns each logical port
to a specific gateway host in its selected cluster. For this
assignment, some embodiments use a load balancing tech-
nique, such as calculating a hash function of a property of the
logical router or port (e.g., a UUID assigned by the controller)
modulo the number of gateway hosts in the cluster. This
assigns the logical router ports to gateway hosts within the
cluster effectively at random (even though the algorithm itself
is deterministic), and therefore load balances the [.3 gateways
across the gateway hosts over the long run.

Some other embodiments may use other techniques to load
balance the .3 gateways across the hosts in a cluster. For
instance, rather than using the hash algorithm to choose
between all gateway hosts in a cluster, some embodiments
choose between only those gateways with the fewest number
of'logical routers currently operating, and modulo the result
of the hash function by this smaller number of gateways.
Other embodiments analyze the number of logical routers on
each gateway and the operational load of the gateways (e.g.,
based on number of packets processed over a particular time-
frame) in order to determine to which gateway host a particu-
lar logical router should be assigned.

Next, the process 1900 generates (at 1915) flow entries for
the MFEs on both the VM hosts and selected gateway host
machines in order to implement the logical router in a distrib-
uted fashion and forward packets within the managed net-
work as well as handle packets entering and exiting the net-
work, and generates data tuples for the routing table for
handling packets in 1.3 gateways implementing each logical
port that connects to the external network. These various flow
entries and routing table data tuples are described in detail
above by reference to, e.g., FIG. 5.

The process then distributes (at 1920) the generated data
tuples and/or flow entries to the various host machines. In
some embodiments, the two types of data (flow entries and
routing table data tuples) are distributed via different proto-
cols. Some embodiments distribute the flow entries to both
the VM hosts and the gateway hosts via a first protocol such as
OpenFlow, while distributing the routing table data tuples to
the gateway hosts via a second protocol such as OVSDB. The

US 9,225,597 B2

37

OVSDB protocol used in some embodiments also carries
configuration information for the MFEs (for both the VM
hosts and the gateway hosts).

In addition to generating and distributing the data for pro-
visioning the forwarding of packets within the network, the
controller of some embodiments is responsible for generating
a routing protocol (e.g., BGP) configuration and handling the
exchange of routing information with external routers. As
such, the process 1900 identifies (at 1925) the addresses (and
other information) of the external network router(s) with
which to peer for each logical port (i.e., each [.3 gateway) that
connects to the external network. In some embodiments, the
administrator inputs this data for each logical port, and
handles ensuring that the external routers are correctly con-
nected to the gateway hosts (or, e.g., a top of rack switch to
which the gateway hosts connect). In other embodiments, the
network controller automatically determines the set of exter-
nal routers to which each of the gateway hosts is connected
based on its stored network state information, and uses these
as the external network routers with which to peer the [.3
gateway. In some route server embodiments, the administra-
tor also ensures that the controller is able to connect with the
external routers. In various different embodiments, the con-
troller(s) connect to the routers via a direct connection,
through other machines in the managed network (e.g., gate-
ways or other host machines), etc.

With the external routers identified for each logical port,
the process generates and installs (at 1930) a BGP configu-
ration on the controller using the identified external routers,
the logical network configuration, and the selected host
machines. In some embodiments, the controller instantiates a
separate BGP process for each [.3 gateway for which it acts as
a route server. Thus, if the logical router is defined with three
ports facing the external network, then the controller instan-
tiates three BGP processes (e.g., the BGP daemon described
above, or a different BGP application) for advertising routes
for each of the three gateways. In other embodiments, the
controller instantiates a single BGP process that performs
route advertisement for all of the gateways implementing
ports for the logical router. In some such embodiments, a
single BGP process handles route advertisement for all logi-
cal routers managed by the controller (e.g., for multiple dif-
ferent logical networks).

To generate the BGP configuration for the particular logi-
cal router, the controller (e.g., the table mapping engine in the
controller) identifies the CIDR prefixes for the logical
switches that attach to the logical router, as these are the
prefixes that the controller as route server will advertise to the
external routers (which will be the same for each gateway). In
addition, the controller uses the selections of gateway host
machines for the BGP configuration, and information gener-
ated for the namespace that will run on the gateway host
machine. The BGP process on the controller will send out
packets advertising these namespaces (rather than itself) as
the actual next hop(s) for the advertised routes, and therefore
must be able to provide the requisite data about the
namespaces (e.g., the autonomous system number, the router
identifier, etc.). Furthermore, the configuration requires an
identification of the external routers with which to exchange
route information for each namespace. In some cases, the
namespace to external router connections might be similar to
those in FIG. 10 (i.e., with different 1.3 gateways for the
logical router connecting to different sets of external routers),
in which case the controller cannot simply advertise the same
set of next hop destinations to each external router. Instead,
the controller stores the list of neighbors for each next hop L3
gateway, such that it can send packets to each of these neigh-

10

15

20

25

30

35

40

45

50

55

60

65

38

bors advertising the particular [.3 gateway as a next hop for
the routes to the logical network.

In some embodiments, the controller generates a configu-
ration file, or several configuration files, for the BGP
instance(s). These configuration files may be similar to the
files generated by the namespace daemon described above.
The controller stores the configuration files in a location at
which the BGP processes can access the files and load their
configuration. At this point, the controller can begin acting as
a route server to contact the external routers.

As such, the process 1900 opens (at 1935), or attempts to
open, BGP session(s) with the neighbor external routers iden-
tified in the configuration. As in the inline model described in
the previous section, several BGP sessions are started, each
operating as its own independent state machine. For instance,
if the logical network includes three ports facing the external
network (and thus three gateways), each of which connect to
two different external routers, then the controller will initiate
six separate BGP sessions in some embodiments. In other
embodiments, the controller initiates only one BGP session
per external router, and sends Updates that specify the several
different next hop options for the routes advertised to the
external router. This process 1900 assumes that adjacency is
established for each BGP session—if the BGP process fails to
open a session with a particular router, then the controller
continues attempting to do so in some embodiments before
transitioning to operation 1940.

Using the BGP configuration data, the process generates
(at 1940) packets for each established BGP session. In some
embodiments, these packets are standard BGP Update pack-
ets that identify the known reachable prefixes, the next hop
destination for those prefixes, and the list of autonomous
systems through which a packet will have to pass to reach
each prefix. In this case, the controller sending the Update
packet is not the next hop—the packet instead identifies one
of the [.3 gateways as that next hop. For routes to logical
switches, the BGP packet advertises the subnet (e.g., 10.1.1/
24) and only a single autonomous system number (that to
which the [.3 gateway belongs), as packets will not have to be
sent to any other autonomous systems once reaching the L3
gateway in order to reach the VM hosts.

For each generated packet, the process sends (at 1945) the
generated packet out of the controller to the destination physi-
cal router. As mentioned above, this connection may be
implemented as a direct connection between the controller
and the external router, or may travel through portions of the
managed network (e.g., gateways, etc. [f the BGP process on
the controller establishes adjacencies with three different
physical routers for three 1.3 gateway next hops, then the
process will send three different BGP Update packets to three
different destinations each. Furthermore, the controller might
be acting as a route server for several different logical net-
works, in which case the controller also sends several differ-
ent Update packets advertising completely different routes.

FIGS. 20-22 conceptually illustrate an example of the use
of a controller as a route server that advertises routes to an
external router for a logical network. FIG. 20 illustrates both
the logical network 2000 and the physical implementation of
that logical network in a managed network 2025. As shown in
the top half of the figure, the logical network 2000 is config-
ured similarly to the logical network 1000 of the example in
the previous section, with a single logical router 2015 con-
necting two logical switches 2005 and 2010. The first logical
switch 2005 includes IP addresses in the subnet 12.0.0/24,
and the second logical switch 2010 includes IP addresses in
the subnet 12.0.1/24. In addition, the logical router 2015

US 9,225,597 B2

39

includes three ports that connect to an external network 2020,
for which route advertisement using a controller as route
server is activated.

The bottom portion of FIG. 20 illustrates the physical
implementation of the logical network 2000. For simplicity,
the VM hosts 2030 are collectively represented as a single box
in this diagram, as in FIG. 15 above. The three ports of the
logical router 2015 that connect to the external network 2020
are implemented as L3 gateways in namespaces 2050-2060
that operate on gateway hosts 2035-2045, respectively. In this
case, the three gateway hosts each connect to the same single
external router 2065 in order to transmit and receive packets
entering and exiting the logical network.

However, unlike the previous examples, the namespaces
2050-2060 do not operate BGP daemons or any other routing
protocol applications, only functioning to process the
ingressing and egressing packets. Instead, a controller cluster
2070 operates to (i) provide provisioning data to the host
machines 2030-2045 and (ii) operate as a route server to
exchange routing information with the external router 2065.
In this figure, the dashed lines between the controller cluster
2070 and the host machines 2030-2045 indicates control path
connections, while the solid lines (between the gateways
2035-2045 and the router 2065, the gateways 2035-2045 and
the VM hosts 2030, and the controller cluster 2070 and the
router 2065) indicate data path connections.

FIG. 21 conceptually illustrates some of the control and
data path data sent by the controller cluster 2070 in order to
effectuate the logical router 2015. As shown, the controller
cluster 2070 distributes logical router configuration data 2105
(e.g., as data tuples defining routing tables for the
namespaces, as flow entries for the MFEs, etc.) to the gateway
hosts 2035-2045. In some embodiments, the controller clus-
ter sends this data in two channels, with the flow entries for
the MFE sent via a first protocol (e.g., OpenFlow) and the data
tuples defining the namespace and the routing table for the
namespace sent via a second protocol (e.g., OVSDB). The
controller cluster of some embodiments distributes the logi-
cal router configuration data 2105 through a hierarchy of
controllers, with a single logical controller generating the
data and distributing the data to the various physical control-
lers that manage and directly provide data to the three gate-
way hosts 2045.

In addition, the controller cluster 2070 transmits three
separate BGP packets to the external network router 2065.
Some embodiments establish three separate sessions with the
external router 2065 (one for each gateway for which the
controller acts as a route server), while other embodiments
transmit the three BGP Updates as part of a single session.
These BGP packets each (i) advertise the CIDR prefixes
12.0.0/24 and 12.0.1/24, (ii) indicate for each of the prefixes
the ordered list of autonomous systems used to reach
addresses in the range defined by the prefixes (which will be
the single autonomous system for the logical network, in most
situations), and (iii) identify the next hop for the advertised
prefixes. In some embodiments, only this next hop varies
between the three packets, as this identifies the different gate-
ways.

As a result of receiving these three packets, the physical
router 2065 updates its routing table to include three possible
equal cost next hops for packets in the identified IP address
ranges (12.0.0/24 and 12.0.1/24). Assuming the router 2065
has ECMP capabilities, it will spread the traffic for these IP
ranges between the three [.3 gateways on the hosts 2035-
2045. FIG. 22 conceptually illustrates the path taken by sev-
eral packets 2205 and 2210 entering the managed network
2025. Both of the packets are received by the logical router

10

15

20

25

30

35

40

45

50

55

60

65

40

2065, and processed by the same forwarding information
base entry. This entry states to use an ECMP algorithm to
decide among the three possible next hops (L3 gateways) for
a packet. As a result, the router sends the first packet 2205 to
the namespace 2055 on the gateway host 2040 and the second
packet 2210 to the namespace 2060 on the gateway host 2045.
The MFEs and namespaces process the packets as described
above in the previous section in order to forward the packets
to the destination virtual machines.

FIG. 23 conceptually illustrates the software architecture
ofa controller 2300 of some embodiments that acts as a route
server for a logical network. As shown, the controller 2300
includes an input interface 2305, a table mapping state com-
putation module 2310, a host assignment module 2315, a
distribution interface 2320, a BGP service 2325, and an exter-
nal network interface 2330. In addition, the network control-
ler 2300 includes one or more state storage databases 2335,
which in some embodiments stores input and/or output of the
table mapping state computation module.

The input interface 2305 of some embodiments receives
input from one or more users to define logical networks (e.g.,
sets of VMs connected through logical switches, logical rout-
ers, middleboxes, gateways to external networks, etc.). For
example, a user could define a logical network such as that
shown in FIG. 20, described above. In some embodiments,
the request received at the input interface specifies the logical
ports in terms of source and destination MAC addresses
entered (or selected) by the user.

When the input interface 2305 receives a specification of a
logical network, the interface of some embodiments trans-
lates this specification into logical control plane data that
defines the logical network, and passes this data to the table
mapping state computation module 2310. In some embodi-
ments, the input interface 2305 reads this logical control
plane data into input tables of the state computation module
2310. The table mapping state computation module 2310 of
some embodiments includes a table mapping engine with a
set of input tables and output tables, and maps records in the
input tables to records in the output tables according to a set
of rules. More specifically, some embodiments translate logi-
cal control plane data into logical forwarding plane data and
subsequently translate the logical forwarding plane data into
universal or customized physical control plane data that can
be passed down to the MFEs that implement the logical
network. The table mapping state computation module 2310
of some embodiments uses nl.og, and is described in greater
detail in U.S. Publication 2013/0058228, which is incorpo-
rated herein by reference.

In addition to generating the physical control plane data, in
some embodiments the table mapping state computation
module 2310 generates other data tuples, such as those for the
routing tables, and BGP configuration data. As described
above, the state computation module may use a set of hosts
selected for hosting gateways by the host assignment module
2315, the IP address ranges of the VMs connected to the
logical networks, and information entered through the input
interface about the external router(s) to compute the BGP
configuration data tuples.

In some embodiments, the table mapping state computa-
tion module 2310 stores its output state in the state storage
database(s) 2335. This database 2335 stores MAC address to
logical port bindings, physical control plane data output by
the table mapping state computation module 2335, routing
table data tuples, BGP configuration information, and other
data in some embodiments.

The host assignment module 2315 uses a hash function or
other algorithm to select gateway hosts for a logical network

US 9,225,597 B2

41

in some embodiments. Based on information provided by the
state computation module 2310, the host assignment module
2315 determines the set of gateway hosts and returns this
selection to the state computation module. For instance, in
some embodiments, based on logical network configuration
input, the state computation module 2310 specifies that a
particular logical router will have a specific number of L3
gateways located in a specific set of gateway host clusters.
The state computation module 2310 requests that the host
assignment module 2315 select a particular gateway hostin a
particular cluster, information which the state computation
module uses when generating the state and the BGP configu-
ration.

As shown, the controller 2300 distributes data to host
machines (both VM hosts and gateway hosts) through its
MEFE interface 2320. Through this interface, the controller
distributes physical control plane data, routing table and con-
figuration data tuples, etc. to the MFEs, [.3 gateways, etc. at
the host machines. In some embodiments, the interface is a
direct connection to the host machines, while in other
embodiments the controller 2300 is a logical controller that
distributes the generated data to a set of physical controllers.
Furthermore, in the inline model embodiments, in which the
BGP service operates in the gateways rather than the control-
ler, the controller uses this interface to distribute BGP con-
figuration data tuples.

In the illustrated embodiments, however, the BGP service
2325 operates on the controller. This BGP service receives
and installs a configuration or set of configurations from the
table mapping state computation 2310 (e.g., as a set of data
tuples), and then establishes BGP sessions with routers out-
side of the managed network according to this configuration.
In some embodiments, the BGP service 2325 combines the
functionality of the namespace daemon and the BGP daemon,
in that it receives the data tuples defining the configuration,
generates a configuration file useable for instantiating a BGP
process, reads and installs the configuration file, and estab-
lishes and participates in BGP sessions with the external
routers.

The BGP service 2325 of some embodiments opens and
establishes BGP sessions with the external routers 2340
through the external network interface 2330. This interface
may be a NIC that handles IP packets in some embodiments,
similar to the connections between gateways and external
routers. Through this interface, the BGP service 2325 sends
updates to the external routers 2340 for each BGP session that
it establishes, enabling the routers 2340 to forward packets
into the logical networks via the gateways provisioned by the
controller 2300.

In addition to advertising routes into the logical network to
the external router, in some embodiments the controller clus-
ter as route server receives BGP packets from the external
router and uses these to update the routing tables for the
logical network. In general, BGP is a bidirectional protocol,
in that each router in a peer-to-peer session sends its routing
information to the other router in the session. As such, the
external router(s) of some embodiments send their informa-
tion to the controller cluster, indicating reachable IP
addresses and prefixes. IF, as in FIG. 10, some of the [.3
gateways connect to multiple routers, then the controller clus-
ter can determine, for various IP addresses advertised by the
L3 gateways, which of the external routers is the optimal next
hop for the IP addresses. The controller cluster can then add
this information to the routing table that it distributes to the L3
gateways.

While the above section describes using the controller as a
route server, some embodiments instead use one or more

5

10

15

20

25

30

35

40

45

50

55

60

65

42

gateway host machines, separate from the gateway hosts that
process ingress and egress traffic for a logical network, as
route servers for the logical router. FIG. 24 conceptually
illustrates such a managed network 2400 of some embodi-
ments within which a logical network (similar in structure to
that of FIG. 1 or FIG. 10) is implemented, and which uses a
separate gateway as a route server. For simplicity, this figure
does not illustrate the host machines upon which the VMs
attached to the logical network reside.

Thelogical router has three ports connecting to the external
network, and therefore these ports are implemented on three
gateways 2405-2415, in three namespaces 2420-2430. These
namespaces operate as .3 gateways to handle ingress and
egress traffic, but do not operate a routing protocol applica-
tion, and therefore do not exchange data with the external
network router 2435. Instead, the controller selects a fourth
gateway host 2440 to operate as a route server for the logical
network. A namespace 2445 operates on the gateway host
2440, running a BGP daemon similar to those shown above in
Section II.

As shown, the controller cluster 2450 generates and dis-
tributes (i) logical router configuration data to the three gate-
way hosts 2405-2415 in order to configure the [.3 gateways in
the namespaces 2420-2430 and (ii) BGP configuration data to
the gateway host 2440 in order to configure the BGP daemon
operating in the namespace 2440. This enables the namespace
2445 to open one or more BGP sessions with the external
router 2435 and advertise route information to the external
router indicating the three L3 gateways as possible next hops
for the IP addresses of the logical network.

V1. Electronic System

Many of the above-described features and applications are
implemented as software processes that are specified as a set
of instructions recorded on a computer readable storage
medium (also referred to as computer readable medium).
When these instructions are executed by one or more process-
ing unit(s) (e.g., one or more processors, cores of processors,
or other processing units), they cause the processing unit(s) to
perform the actions indicated in the instructions. Examples of
computer readable media include, but are not limited to,
CD-ROMs, flash drives, RAM chips, hard drives, EPROMs,
etc. The computer readable media does not include carrier
waves and electronic signals passing wirelessly or over wired
connections.

In this specification, the term “software” is meant to
include firmware residing in read-only memory or applica-
tions stored in magnetic storage, which can be read into
memory for processing by a processor. Also, in some embodi-
ments, multiple software inventions can be implemented as
sub-parts of a larger program while remaining distinct soft-
ware inventions. In some embodiments, multiple software
inventions can also be implemented as separate programs.
Finally, any combination of separate programs that together
implement a software invention described here is within the
scope of the invention. In some embodiments, the software
programs, when installed to operate on one or more electronic
systems, define one or more specific machine implementa-
tions that execute and perform the operations of the software
programs.

FIG. 25 conceptually illustrates an electronic system 2500
with which some embodiments of the invention are imple-
mented. The electronic system 2500 can be used to execute
any of the control, virtualization, or operating system appli-
cations described above. The electronic system 2500 may be
a computer (e.g., a desktop computer, personal computer,
tablet computer, server computer, mainframe, a blade com-
puter etc.), phone, PDA, or any other sort of electronic device.

US 9,225,597 B2

43

Such an electronic system includes various types of computer
readable media and interfaces for various other types of com-
puter readable media. Electronic system 2500 includes a bus
2505, processing unit(s) 2510, a system memory 2525, a
read-only memory 2530, a permanent storage device 2535,
input devices 2540, and output devices 2545.

Thebus 2505 collectively represents all system, peripheral,
and chipset buses that communicatively connect the numer-
ous internal devices of the electronic system 2500. For
instance, the bus 2505 communicatively connects the pro-
cessing unit(s) 2510 with the read-only memory 2530, the
system memory 2525, and the permanent storage device
2535.

From these various memory units, the processing unit(s)
2510 retrieve instructions to execute and data to process in
order to execute the processes of the invention. The process-
ing unit(s) may be a single processor or a multi-core processor
in different embodiments.

The read-only-memory (ROM) 2530 stores static data and
instructions that are needed by the processing unit(s) 2510
and other modules of the electronic system. The permanent
storage device 2535, on the other hand, is a read-and-write
memory device. This device is a non-volatile memory unit
that stores instructions and data even when the electronic
system 2500 is off. Some embodiments of the invention use a
mass-storage device (such as a magnetic or optical disk and
its corresponding disk drive) as the permanent storage device
2535.

Other embodiments use a removable storage device (such
as a floppy disk, flash drive, etc.) as the permanent storage
device. Like the permanent storage device 2535, the system
memory 2525 is a read-and-write memory device. However,
unlike storage device 2535, the system memory is a volatile
read-and-write memory, such a random access memory. The
system memory stores some of the instructions and data that
the processor needs at runtime. In some embodiments, the
invention’s processes are stored in the system memory 2525,
the permanent storage device 2535, and/or the read-only
memory 2530. From these various memory units, the process-
ing unit(s) 2510 retrieve instructions to execute and data to
process in order to execute the processes of some embodi-
ments.

The bus 2505 also connects to the input and output devices
2540 and 2545. The input devices enable the user to commu-
nicate information and select commands to the electronic
system. The input devices 2540 include alphanumeric key-
boards and pointing devices (also called “cursor control
devices”). The output devices 2545 display images generated
by the electronic system. The output devices include printers
and display devices, such as cathode ray tubes (CRT) or liquid
crystal displays (LCD). Some embodiments include devices
such as a touchscreen that function as both input and output
devices.

Finally, as shown in FIG. 25, bus 2505 also couples elec-
tronic system 2500 to a network 2565 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN”), a wide area network (“WAN”), or an Intranet, or a
network of networks, such as the Internet. Any or all compo-
nents of electronic system 2500 may be used in conjunction
with the invention.

Some embodiments include electronic components, such
as microprocessors, storage and memory that store computer
program instructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-read-
able storage media, machine-readable media, or machine-
readable storage media). Some examples of such computer-

10

20

25

30

35

40

45

55

60

65

44

readable media include RAM, ROM, read-only compact
discs (CD-ROM), recordable compact discs (CD-R), rewrit-
able compact discs (CD-RW), read-only digital versatile
discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of
recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW,
DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD
cards, micro-SD cards, etc.), magnetic and/or solid state hard
drives, read-only and recordable Blu-Ray® discs, ultra den-
sity optical discs, any other optical or magnetic media, and
floppy disks. The computer-readable media may store a com-
puter program that is executable by at least one processing
unit and includes sets of instructions for performing various
operations. Examples of computer programs or computer
code include machine code, such as is produced by a com-
piler, and files including higher-level code that are executed
by a computer, an electronic component, or a microprocessor
using an interpreter.

While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute software, some
embodiments are performed by one or more integrated cir-
cuits, such as application specific integrated circuits (ASICs)
or field programmable gate arrays (FPGAs). In some embodi-
ments, such integrated circuits execute instructions that are
stored on the circuit itself.

As used in this specification, the terms “computer”,
“server”, “processor”, and “memory” all refer to electronic or
other technological devices. These terms exclude people or
groups of people. For the purposes of the specification, the
terms display or displaying means displaying on an electronic
device. As used in this specification, the terms “computer
readable medium,” “computer readable media,” and
“machine readable medium” are entirely restricted to tan-
gible, physical objects that store information in a form that is
readable by a computer. These terms exclude any wireless
signals, wired download signals, and any other ephemeral
signals.

While the invention has been described with reference to
numerous specific details, one of ordinary skill in the art will
recognize that the invention can be embodied in other specific
forms without departing from the spirit of the invention. In
addition, a number of the figures (including FIGS. 5, 8,9, and
19) conceptually illustrate processes. The specific operations
of these processes may not be performed in the exact order
shown and described. The specific operations may not be
performed in one continuous series of operations, and differ-
ent specific operations may be performed in different
embodiments. Furthermore, the process could be imple-
mented using several sub-processes, or as part of a larger
macro process. Thus, one of ordinary skill in the art would
understand that the invention is not to be limited by the
foregoing illustrative details, but rather is to be defined by the
appended claims.

We claim:

1. A network system comprising:

a first plurality of host machines hosting virtual machines
that connect to each other through alogical network; and

a second plurality of host machines hosting virtualized
containers that operate as gateways to process packets
entering the logical network from external sources,
wherein each of the virtualized containers advertises
itself to an external router as a next hop for packets
entering the logical network such that the external router
uses equal-cost multi-path forwarding to distribute the
packets across the virtualized containers on the second
plurality of host machines.

US 9,225,597 B2

45

2. The network system of claim 1, wherein each of the
virtualized containers operates a routing protocol application
that peers with the external router.

3. The network system of claim 2, wherein the routing
protocol application uses Border Gateway Protocol (BGP) to
peer with and exchange routing information with the external
router.

4. The network system of claim 1, wherein a first one of the
virtualized containers peers with the external router and a
second external router, wherein a second one of the virtual-
ized containers peers with the external router and a third
external router.

5. The network system of claim 1 further comprising a set
of network controllers for managing the first and second
pluralities of host machines by generating and distributing
data to provision the managed forwarding elements and vir-
tualized containers.

6. The network system of claim 5, wherein the set of
network controllers comprises:

a first network controller for generating the data for provi-

sioning the virtualized containers; and

a plurality of additional network controllers for receiving
the generated data from the first network controller and
distributing the data to the second plurality of host
machines.

7. The network system of claim 1, wherein the virtualized

containers are namespaces.

8. The network system of claim 1, wherein each of the
virtualized containers comprises a routing table for routing
packets received from the external router.

9. The network system of claim 1, wherein the virtual
machines are a first set of virtual machines, the virtualized
containers are a first set of virtualized containers, and the
particular external router is a first external router, the network
system further comprising:

a third plurality of host machines hosting a second set of
virtual machines that connect to each other through a
second logical network; and

a fourth plurality of host machines hosting a second set of
virtualized containers that operate as gateways to pro-
cess packets entering the second logical network from
external sources, wherein each of the virtualized con-
tainers in the second set advertises itself to a second
external router as a next hop for packets entering the
second logical network such that the second external
router uses equal-cost multi-path forwarding to distrib-
ute the packets entering the second logical network
across the second set of virtualized containers on the
fourth plurality of host machines.

10. The network system of claim 9, wherein the second
plurality of host machines and the fourth plurality of host
machines have at least a particular host machine in common.

11. The network system of claim 10, wherein the first and
second external routers are the same router, wherein the par-
ticular host machine comprises a managed forwarding ele-
ment that determines whether to send packets received from
the external router to the virtualized container on the particu-

30

35

40

45

46

lar host machine for the first logical network or the virtualized
container on the particular host machine for the second logi-
cal network.

12. For a first virtualized container operating on a first host
machine as a first gateway for processing traffic between a
logical network implemented in a managed network and an
external network, a method comprising:

transmitting route advertisement messages to a physical

router in the external network, the route advertisement
messages identifying the first gateway as a next hop for
packets with destination network addresses within a
range of addresses assigned to virtual machines of the
logical network; and

as a result of at least a second virtualized container oper-

ating on a second host machine as a second gateway
transmitting similar route advertisement messages to the
physical router, receiving only a first portion of traffic
sent from the physical router to the logical network,
wherein the second virtualized container receives a sec-
ond portion of the traffic sent from the physical router to
the logical network.

13. The method of claim 12, wherein the route advertise-
ment messages comprise Border Gateway Protocol (BGP)
Update messages.

14. The method of claim 12 further comprising:

receiving route advertisement messages from the physical

router that identify the physical router as a next hop for
packets with destination network addresses in a set of
network addresses; and

using the received route advertisement messages to update

a routing table of the virtualized container.

15. The method of claim 14 further comprising distributing
information from the received route advertisement messages
to a set of network controllers that manages the logical net-
work.

16. The method of claim 12 further comprising, prior to
transmitting the route advertisement messages, establishing a
route information exchange session with the physical router.

17. The method of claim 12, wherein the physical router
uses an equal-cost multi-path algorithm to distribute traffic
between the first and second virtualized containers.

18. The method of claim 17, wherein the physical router
uses a hash function of source and destination addresses of a
packet in order to determine to which of the first and second
virtualized containers to send the packet.

19. The method of claim 12, wherein a plurality of addi-
tional virtualized containers operating on a plurality of host
machines as gateways transmit similar route advertisement
messages to the physical router, wherein the physical router
distributes the traffic sent to the logical network between the
first, second, and plurality of additional virtualized contain-
ers.

20. The method of claim 12, wherein the similar route
advertisement messages advertise the second gateway as a
next hop for packets with the same destination network
addresses.

